作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1793-1801.doi: 10.3724/SP.J.1006.2018.01793
摘要:
芸薹素唑耐受因子(brassinazole-resistant, BZR)是油菜素内酯信号转导过程中的关键转录因子, 目前已知BZR1与BZR2 (BES1)两种亚型。本文在甘蓝型油菜湘油15号cDNA中克隆到3个BZR全长编码序列(coding sequence, CDS), 经比对鉴定分别为定位于A07染色体的1拷贝BZR1和定位于A06染色体的2拷贝BES1, 分别命名为BnaBZR1_A07、BnaBES1_A06F和BnaBES1_A06R, 序列长分别为996、993和996 bp, 各自编码331、330、331个氨基酸。这3个基因编码蛋白具有典型植物BZR/BES结构域, 亚细胞定位预测主要位于细胞核。多序列比对和进化分析表明, BnaBZR1/BnaBES1基因编码蛋白与甘蓝、白菜、拟南芥、亚麻芥等BZR/BES蛋白具有较高的同源性, 且同源物种间BZR1或BES1相似度高于同一物种或者近缘物种中BZR1与BES1间相似度, 表明BZR1与BES1分化是一个早期进化事件。湘油15号中这3个基因表达规律相似, 苗期和花期具有高水平的BnaBZR基因表达, 抽薹期和角果成熟期表达稍低; 且BnaBZR基因表达水平在地上部分的叶、茎、花和角果中相对于地下部分的根中较高。
[1] |
Wang Z Y, Bai M Y, Oh E, Zhu J Y . Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet, 2012,46:701-724
doi: 10.1146/annurev-genet-102209-163450 pmid: 23020777 |
[2] | Gallego-Bartolomé J, Minguet E G, Grau-Enguix F, Abbas M, Locascio A, Thomas S G, Blázquez M A . Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 2012,109:13446-13451 |
[3] |
Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001 pmid: 21377404 |
[4] |
Wang W, Bai M Y, Wang Z Y . The brassinosteroid signaling network: a paradigm of signal integration. Curr Opin Plant Biol, 2014,21:147-153
doi: 10.1016/j.pbi.2014.07.012 pmid: 25139830 |
[5] |
Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, Patil S . Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010,19:765-777
doi: 10.1016/j.devcel.2010.10.010 pmid: 3018842 |
[6] |
Tong H, Chu C . Brassinosteroid signaling and application in rice. J Genet Genomics, 2012,39:3-9
doi: 10.1016/j.jgg.2011.12.001 pmid: 22293112 |
[7] |
Efimova M V, Savchuk A L, Hasan J A K, Litvinovskaya R P, Khripach V A, Kholodova V P, Kuznetsov V V . Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ J Plant Physiol, 2014,61:733-743
doi: 10.1134/S1021443714060053 |
[8] | Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornas A, Barna B . Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence. J Thermanal Calor, 2011,104:131-139 |
[9] |
Pokotylo I V, Kretynin S V, Khripach V A, Ruelland E, Blume Y B, Kravets V S . Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul, 2014,73:9-17
doi: 10.1007/s10725-013-9863-y |
[10] |
Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298
doi: 10.1038/srep28298 pmid: 4915011 |
[11] | Lachowiec J, Mason G A, Schultz K, Queitsch C . Redundancy, feedback, and robustness in the Arabidopsis thaliana BZR/BEH gene family. BioRxiv, 2016: 053447 |
[12] |
Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang X . The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell, 2017,29:292-309
doi: 10.1105/tpc.16.00611 pmid: 28100707 |
[13] | Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8 |
[14] |
Hao J, Yin Y, Fei S . Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep, 2013,32:1017-1030
doi: 10.1007/s00299-013-1438-x |
[15] | 李玲, 李俊, 张春雷, 张树杰, 马霓, 李光明 . 外源 ABA 和 BR 在提高油菜幼苗耐渍性中的作用. 中国油料作物学报, 2012,34:489-495 |
Li L, Li J, Zhang C L, Zhang S J, Ma L, Li G M . Effects of exogenous ABA and BR on waterlogging resistance of juvenile rapeseed. Chin J Oil Crop Sci, 2012,34:489-495 (in Chinese with English abstract) | |
[16] |
Yang D L, Yang Y, He Z . Roles of plant hormones and their interplay in rice immunity. Mol Plant, 2013,6:675-685
doi: 10.1093/mp/sst056 pmid: 23589608 |
[17] |
Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y . Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil, 2016,400:147-164
doi: 10.1007/s11104-015-2712-1 |
[18] | 王庆燕, 管大海, 潘海波, 李建民, 段留生, 张明才, 李召虎 . 油菜素内酯对春玉米灌浆期叶片光合功能与产量的调控效应. 作物学报, 2015,41:1557-1563 |
Wang Q Y, Guan D H, Pan H B, Li J M, Duan L S, Zhang M C, Li Z H . Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage. Acta Agron Sin, 2015,41:1557-1563 (in Chinese with English abstract) | |
[19] |
Hayat S, Alyemeni M N, Hasan S A . Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci, 2012,19:325-335
doi: 10.1016/j.sjbs.2012.03.005 pmid: 23961193 |
[20] |
Fridman Y, Savaldi-Goldstein S . Brassinosteroids in growth control: how, when and where. Plant Sci, 2013,209:24-31
doi: 10.1016/j.plantsci.2013.04.002 pmid: 23759100 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[5] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[6] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[12] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[13] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[14] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[15] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
|