欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1793-1801.doi: 10.3724/SP.J.1006.2018.01793

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析

冯韬,官春云()   

  1. 湖南农业大学农学院 / 国家油料改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2018-05-03 接受日期:2018-08-20 出版日期:2018-12-12 网络出版日期:2018-09-19
  • 通讯作者: 官春云
  • 基金资助:
    本研究由国家重点基础研究发展计划(973计划)项目资助(2015CB150206)

Cloning and Characterization of Brassinazole-resistant (BnaBZR1 and BnaBES1) CDS from Brassica napus L.

Tao FENG,Chun-Yun GUAN()   

  1. College of Agronomy, Hunan Agricultural University / National Oilseed Crops Improvement Center in Hunan, Changsha 410128, Hunan, China
  • Received:2018-05-03 Accepted:2018-08-20 Published:2018-12-12 Published online:2018-09-19
  • Contact: Chun-Yun GUAN
  • Supported by:
    This study was supported by the National Basic Research Program (973 Program).(2015CB150206)

摘要:

芸薹素唑耐受因子(brassinazole-resistant, BZR)是油菜素内酯信号转导过程中的关键转录因子, 目前已知BZR1与BZR2 (BES1)两种亚型。本文在甘蓝型油菜湘油15号cDNA中克隆到3个BZR全长编码序列(coding sequence, CDS), 经比对鉴定分别为定位于A07染色体的1拷贝BZR1和定位于A06染色体的2拷贝BES1, 分别命名为BnaBZR1_A07BnaBES1_A06FBnaBES1_A06R, 序列长分别为996、993和996 bp, 各自编码331、330、331个氨基酸。这3个基因编码蛋白具有典型植物BZR/BES结构域, 亚细胞定位预测主要位于细胞核。多序列比对和进化分析表明, BnaBZR1/BnaBES1基因编码蛋白与甘蓝、白菜、拟南芥、亚麻芥等BZR/BES蛋白具有较高的同源性, 且同源物种间BZR1或BES1相似度高于同一物种或者近缘物种中BZR1与BES1间相似度, 表明BZR1与BES1分化是一个早期进化事件。湘油15号中这3个基因表达规律相似, 苗期和花期具有高水平的BnaBZR基因表达, 抽薹期和角果成熟期表达稍低; 且BnaBZR基因表达水平在地上部分的叶、茎、花和角果中相对于地下部分的根中较高。

关键词: 甘蓝型油菜, 芸薹素唑耐受因子, 基因克隆, 基因表达, 生物信息学分析

Abstract:

Brassinazole-resistant (BZR) is a key transcription factor in brassinosteroid signaling pathway of plants, containing brassinazole-resistant 1 (BZR1) and brassinazole-resistant 2 (BES1). In this study, three novel BZR1 coding sequences (CDSs) were isolated from cDNA of Brassica napus L. cv. Xiangyou 15 leaves, which were mapped on the chromosomes A07, A06, and A06, and designated as BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R, respectively. These three BnaBZR CDSs were 996, 993, and 996 bp in length and encoded predicted proteins with 331, 330, and 331 amino acid residues, respectively. BnaBZR proteins were predicted to be located on the cell nucleus and have a typical plant BZR/BES conserved domain. Multiple sequence alignments and phylogenetic analysis showed that the deduced amino acid sequences of BnaBZR were highly homologous to previously reported BZR/BES of Brassica oleracea, Arabidopsis thalian, and Eruca sativa. And the similarity of BZR1 or BES1 among different related species was higher than the similarity between BZR1 and BES1 in the same species or related species, indicating that BZR1 and BES1 differentiation is an early evolutionary event. The expression patterns of BnaBZR1_A07, BnaBES1_A06F, and BnaBES1_A06R in Xiangyou 15 were similar, whit high expression level at the seedling stage and flowering stage, while slightly lower level at the stage of bolting and podgrain ripening. The expression level of BnaBZR in the aerial parts such as leaves, stems, flowers and pods was higher than that in underground parts.

Key words: Brassica napus L., BZR, gene clone, gene expression, bionformatic analysis

图1

BnaBZR1_A07、BnaBES1_A06F和BnaBES1_A06R 基因克隆 M: 2K DNA marker; 1: BnaBZR1_A07编码序列; 2: BnaBES1_A06F编码序列; 3: BnaBES1_A06R编码序列。"

表1

BnaBZR1、BnaBES1_F和BnaBES1_R蛋白信息汇总表"

蛋白编号
Serial number
氨基酸残基数
Base of amino acid residues
摩尔质量
Molar mass (Da)
等电点
Isoelectric point
BnaBZR1_A07 331 35 895.131 9.145
BnaBES1_A06F 330 36 071.176 9.745
BnaBES1_A06R 331 36 177.322 9.745

图2

BnaBZR1_A07、BnaBES1_A06F和BnaBES1_A06R蛋白二级结构"

表2

BnaBZR1_A07、BnaBES1_A06F和BnaBES1_A06R蛋白特殊识别位点序列总表"

蛋白编号
Serial number
位点类型
Domains type
数量
Number
位置
Location
序列
Sequence
序列模式
Sequence motif
BnaBZR1_A07 PS00001 2 142-145, 143-146 NNSS, NSST N-{P}-[ST]-{P}
PS00004 1 21-24 RKPS [RK](2)-x-[ST]
PS00005 5 24-26, 84-86, 162-164, 179-181, 221-223 SWR, TYR, SLR, TSK, THR [ST]-x-[RK]
PS00006 4 24-27, 236-239, 230-233, 240-243 SWRE, SRGE, TIPE, STVD [ST]-x(2)-[DE]
PS00008 4 5-10, 154-159, 155-160, 325-330 GATSTS, GGIPSS, GIPSSSL, GNGKAR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
BnaBES1_A06F PS00001 1 138-141 NIST N-{P}-[ST]-{P}
PS00004 1 20-23 RKPS [RK](2)-x-[ST]
蛋白编号
Serial number
位点类型
Domains type
数量
Number
位置
Location
序列
Sequence
序列模式
Sequence motif
BnaBES1_A06R PS00005 5 18-20, 23-25, 83-85, 99-101, 174-176 TRR, SWR, TYR, SSR, TNK [ST]-x-[RK]
PS00006 6 23-26, 112-115, 134 -137, 227 -230, 237-240, 305-308 SWRE, SPFE, SRGD, TIPE, STVD, TPWE [ST]-x(2)-[DE]
PS00008 5 5-10, 149-154, 150-155, 259-264, 325-330 GATSTS, GGIPSS, GIPSSL, GVSSAV, GNAKGR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00016 1 135-137 RGD R-G-D
PS00001 1 139-142 NIST N-{P}-[ST]-{P}
PS00004 1 21-24 RKPS [RK](2)-x-[ST]
PS00005 5 18-20, 24-26, 84-86, 100-102, 175-177 TRR, SWR, TYR, SSR, TSK [ST]-x-[RK]
PS00006 6 24-27, 113-116, 135-138, 228-231, 238-241, 306-309 SWRE, SPFE, SRGD, TIPE, STVD, TPWE [ST]-x(2)-[DE]
PS00008 5 5-10, 150-155, 151-156, 260-265, 326-331 GATSTS, GGIPSS, GIPSSL, GVSSAV, GNAKGR G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00016 1 136-138 RGD R-G-D

图3

BnaBZR氨基酸序列比对"

图4

不同植物BZR/BES蛋白的进化树分析"

图5

不同发育时期不同组织中BnaBZR1_A07、BnaBES1_A06F和BnaBES1_A06R的表达量 DAG表示种子萌发后天数。"

[1] Wang Z Y, Bai M Y, Oh E, Zhu J Y . Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet, 2012,46:701-724
doi: 10.1146/annurev-genet-102209-163450 pmid: 23020777
[2] Gallego-Bartolomé J, Minguet E G, Grau-Enguix F, Abbas M, Locascio A, Thomas S G, Blázquez M A . Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA, 2012,109:13446-13451
[3] Peleg Z, Blumwald E . Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol, 2011,14:290-295
doi: 10.1016/j.pbi.2011.02.001 pmid: 21377404
[4] Wang W, Bai M Y, Wang Z Y . The brassinosteroid signaling network: a paradigm of signal integration. Curr Opin Plant Biol, 2014,21:147-153
doi: 10.1016/j.pbi.2014.07.012 pmid: 25139830
[5] Sun Y, Fan X Y, Cao D M, Tang W, He K, Zhu J Y, Patil S . Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010,19:765-777
doi: 10.1016/j.devcel.2010.10.010 pmid: 3018842
[6] Tong H, Chu C . Brassinosteroid signaling and application in rice. J Genet Genomics, 2012,39:3-9
doi: 10.1016/j.jgg.2011.12.001 pmid: 22293112
[7] Efimova M V, Savchuk A L, Hasan J A K, Litvinovskaya R P, Khripach V A, Kholodova V P, Kuznetsov V V . Physiological mechanisms of enhancing salt tolerance of oilseed rape plants with brassinosteroids. Russ J Plant Physiol, 2014,61:733-743
doi: 10.1134/S1021443714060053
[8] Skoczowski A, Janeczko A, Gullner G, Tóbias I, Kornas A, Barna B . Response of brassinosteroid-treated oilseed rape cotyledons to infection with the wild type and HR-mutant of Pseudomonas syringae or with P. fluorescence. J Thermanal Calor, 2011,104:131-139
[9] Pokotylo I V, Kretynin S V, Khripach V A, Ruelland E, Blume Y B, Kravets V S . Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul, 2014,73:9-17
doi: 10.1007/s10725-013-9863-y
[10] Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298
doi: 10.1038/srep28298 pmid: 4915011
[11] Lachowiec J, Mason G A, Schultz K, Queitsch C . Redundancy, feedback, and robustness in the Arabidopsis thaliana BZR/BEH gene family. BioRxiv, 2016: 053447
[12] Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang X . The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell, 2017,29:292-309
doi: 10.1105/tpc.16.00611 pmid: 28100707
[13] Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8
[14] Hao J, Yin Y, Fei S . Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep, 2013,32:1017-1030
doi: 10.1007/s00299-013-1438-x
[15] 李玲, 李俊, 张春雷, 张树杰, 马霓, 李光明 . 外源 ABA 和 BR 在提高油菜幼苗耐渍性中的作用. 中国油料作物学报, 2012,34:489-495
Li L, Li J, Zhang C L, Zhang S J, Ma L, Li G M . Effects of exogenous ABA and BR on waterlogging resistance of juvenile rapeseed. Chin J Oil Crop Sci, 2012,34:489-495 (in Chinese with English abstract)
[16] Yang D L, Yang Y, He Z . Roles of plant hormones and their interplay in rice immunity. Mol Plant, 2013,6:675-685
doi: 10.1093/mp/sst056 pmid: 23589608
[17] Zheng Q, Liu J, Liu R, Wu H, Jiang C, Wang C, Guan Y . Temporal and spatial distributions of sodium and polyamines regulated by brassinosteroids in enhancing tomato salt resistance. Plant Soil, 2016,400:147-164
doi: 10.1007/s11104-015-2712-1
[18] 王庆燕, 管大海, 潘海波, 李建民, 段留生, 张明才, 李召虎 . 油菜素内酯对春玉米灌浆期叶片光合功能与产量的调控效应. 作物学报, 2015,41:1557-1563
Wang Q Y, Guan D H, Pan H B, Li J M, Duan L S, Zhang M C, Li Z H . Effect of brassinolide on leaf photosynthetic function and yield in spring maize filling stage. Acta Agron Sin, 2015,41:1557-1563 (in Chinese with English abstract)
[19] Hayat S, Alyemeni M N, Hasan S A . Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci, 2012,19:325-335
doi: 10.1016/j.sjbs.2012.03.005 pmid: 23961193
[20] Fridman Y, Savaldi-Goldstein S . Brassinosteroids in growth control: how, when and where. Plant Sci, 2013,209:24-31
doi: 10.1016/j.plantsci.2013.04.002 pmid: 23759100
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[14] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!