欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (12): 1782-1792.doi: 10.3724/SP.J.1006.2018.01782

• 专题: 玉米籽粒脱水与机械收获研究 • 上一篇    下一篇

玉米生理成熟后倒伏变化及其影响因素

薛军1,王群2,李璐璐1,张万旭2,谢瑞芝1,王克如1,明博1,侯鹏1,李少昆1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业部作物生理生态重点实验室, 北京100081
    2石河子大学农学院, 新疆石河子 832000
  • 收稿日期:2018-02-06 接受日期:2018-07-20 出版日期:2018-12-12 网络出版日期:2018-08-03
  • 通讯作者: 李少昆
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0300101);本研究由国家重点研发计划项目(2016YFD0300110);国家自然科学基金项(31371575);国家现代农业产业技术体系建设专项(CARS-02-25);中国农业科学院农业科技创新工程资助

Changes of Maize Lodging after Physiological Maturity and Its Influencing Factors

Jun XUE1,Qun WANG2,Lu-Lu LI1,Wan-Xu ZHANG2,Rui-Zhi XIE1,Ke-Ru WANG1,Bo MING1,Peng HOU1,Shao-Kun LI1,*()   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081, China
    2 College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2018-02-06 Accepted:2018-07-20 Published:2018-12-12 Published online:2018-08-03
  • Contact: Shao-Kun LI
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300101);This study was supported by the National Key Research and Development Program of China(2016YFD0300110);the National Natural Science Foundation of China(31371575);the China Agriculture Research System(CARS-02-25);the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

摘要:

针对机械粒收玉米生理成熟后田间站秆脱水期间的倒伏问题, 本研究通过多点试验调查夏玉米和春玉米生理成熟后倒伏发生类型和规律, 分析影响玉米生理成熟后倒伏发生的关键因素。结果表明, 玉米生理成熟后, 茎折率升高是倒伏增加的主要原因; 茎折率随抗折力降低而升高, 抗折断力降低至14.3 N时, 茎折率超过5%; 植株重心高度逐渐降低, 茎秆基部第3节间穿刺强度(RPS)、第4节间压碎强度(CS)、第5节间弯曲强度(BS)均逐渐降低, 基部节间单位长度干重(DWUL)和含水率也逐渐降低; 茎秆抗折断力与RPS、CS、BS、DWUL和含水率均呈极显著正相关, RPS、CS和BS均与DWUL和含水率呈极显著正相关。本研究表明, 玉米生理成熟后植株自然衰老导致的茎秆干物质降低和水分含量下降, 是茎秆机械强度降低、茎折率增加的主要原因。因此应适期收获, 避免田间站秆时间过长引起倒伏率增加导致的收获产量损失。

关键词: 玉米, 倒伏, 生理成熟, 茎秆强度, 干重, 含水率

Abstract:

In view of the lodging problem during grain dehydration after physiological maturity in maize mechanical grain harvest, multi-sites experiments were conducted to investigate the lodging type and law and their influencing factors in summer maize and spring maize after physiological maturity. The increase of stalk lodging rate was the major reason for total lodging rate increase after physiological maturity. The stalk lodging rate increased as breaking force decreased. The stalk lodging rate was more than 5% when breaking force decreased to 14.3 N. All of height of gravity center, rind penetration strength (RPS) of the third internode, crushing strength (CS) of the fourth internode, and bending strength (BS) of the fifth internode gradually decreased after physiological maturity. Both dry weight per unit length (DWUL) and moisture content of the basal internode also gradually decreased. Stalk breaking force was significantly positively correlated with RPS, CS, BS, DWUL, and moisture content of the basal internode. RPS, CS, BS were significantly positively correlated with DWUL and moisture content. This study showed that natural senescence of maize after physiological maturity decreases the dry matter and moisture content, resulting in the decrease of stalk mechanical strength, and the increase of stalk lodging. The ability of stalk continuous standing after physiological maturity should be used as one of the important indices to measure which maize cultivar is fit for mechanical grain harvest. Harvesting at optimal time could prevent lodging after physiological maturity and reduce grain loss in mechanical grain harvest.

Key words: maize, lodging, physiological maturity, stalk strength, dry weight, moisture content

表1

供试品种"

表2

不同玉米品种生理成熟后倒伏率"

品种
Cultivar
总倒伏率 Total lodging rate (%) 茎折率 Stalk lodging rate (%) 根倒率 Root lodging rate (%)
Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6
辽单586 Liaodan 586 1.7 11.3 12.1 12.5 1.7 11.3 12.1 12.1 0 0 0 0.4
辽单585 Liaodan 585 0 1.3 2.9 4.8 0 0.4 2.0 3.9 0 0.9 0.9 0.9
辽单575 Liaodan 575 2.3 5.6 23.0 23.2 1.2 1.6 19.1 19.3 1.1 4.0 4.0 4.0
MC 670 0 0.5 3.9 5.6 0 0.5 3.9 5.6 0 0 0 0
恒育898 Hengyu 898 0.5 1.2 2.2 2.2 0.5 1.2 2.2 2.2 0 0 0 0
宇玉30 Yuyu 30 4.6 7.5 10.6 15.7 0.7 2.2 3.0 8.1 4.0 5.3 7.6 7.6
裕丰303 Yufeng 303 25.3 28.0 37.9 37.9 1.2 1.2 7.0 7.0 24.1 26.8 30.9 30.9
联创808 Lianchuang 808 4.8 28.1 82.8 86.9 0 1.4 4.8 7.3 4.8 26.7 78.0 79.5
品种
Cultivar
总倒伏率 Total lodging rate (%) 茎折率 Stalk lodging rate (%) 根倒率 Root lodging rate (%)
Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6 Oct. 27 Nov. 10 Nov. 25 Dec. 6
联创825 Lianchuang 825 47.8 63.1 71.1 71.1 0 0 0 0 47.8 63.1 71.1 71.1
利单295 Lidan 295 1.9 3.4 18.3 24.4 0.6 1.9 15.5 21.6 1.3 1.5 2.8 2.8
LA 505 1.0 2.6 5.3 11.4 0 1.5 3.9 5.2 1.0 1.0 1.4 6.3
北斗309 Beidou 309 8.2 11.9 32.6 33.5 1.7 4.5 23.9 24.7 6.4 7.4 8.8 8.8
豫单9953 Yudan 9953 3.5 3.5 7.5 25.7 0 0 2.1 17.3 3.5 3.5 5.4 8.5
新单58 Xindan 58 4.6 6.1 10.6 20.8 0.4 0.5 4.0 14.2 4.3 5.6 6.6 6.6
新单65 Xindan 65 0 0 1.0 11.5 0 0 1.0 6.2 0 0 0 5.3
新单68 Xindan 68 0 0.7 2.5 50.6 0 0.7 2.5 50.6 0 0 0 0
农华5号 Nonghua 5 74.6 74.8 80.9 80.9 0.3 0.5 0.8 0.8 74.3 74.3 80.1 80.1
农华816 Nonghua 816 7.0 7.6 18.0 20.6 0.8 1.4 11.7 13.7 6.2 6.2 6.2 6.9
迪卡517 Dika 517 0.4 1.0 7.7 8.2 0.4 1.0 7.7 8.2 0 0 0 0
迪卡653 Dika 653 0.4 0.4 2.9 2.9 0 0 2.5 2.5 0.4 0.4 0.4 0.4
陕单636 Shaandan 636 0.7 4.2 6.3 22.2 0.7 0.9 1.4 16.9 0 3.3 5.0 5.2
陕单650 Shaandan 650 3.8 4.5 10.2 12.1 0 0.3 4.9 6.7 3.8 4.2 5.3 5.3
泽玉501 Zeyu 501 0.8 1.7 2.9 4.5 0.6 0.8 2.0 3.6 0.2 0.9 0.9 0.9
泽玉8911 Zeyu 8911 0 0 0 0 0 0 0 0 0 0 0 0
吉单66 Jidan 66 2.4 3.8 15.0 16.5 2.1 2.4 13.6 15.1 0.4 1.4 1.4 1.4
东单913 Dongdan 913 1.4 2.7 5.5 8.7 0 0 2.5 5.7 1.4 2.7 3.0 3.0
金通152 Jintong 152 2.2 5.6 51.7 54.9 0 1.6 43.7 45.2 2.2 4.0 8.0 9.6
中科玉505 Zhongkeyu 505 72.3 83.8 84.4 90.1 3 0.4 0.8 6.2 72.0 83.4 83.6 83.9
平均值 Average 9.7 b 13.0 ab 21.8 ab 27.1 a 0.5 c 1.4 c 7.1 b 11.8 a 9.3 a 11.7 a 14.7 a 15.3 a
最大值 Maximum 74.6 83.8 84.4 90.1 2.1 11.3 43.7 50.6 74.3 83.4 83.6 83.9
最小值 Minimum 0 0 0 0 0 0 0 0 0 0 0 0
变异系数 CV (%) 210.4 174.9 123.8 98.4 130.1 159.3 132.8 103.3 221.4 197.6 184.6 176.4

图1

玉米生理成熟后茎秆抗折断力变化 图A为新乡夏玉米,图B为奇台春玉米。箱线图(图A)中箱体部分代表50%样本的分布区域,即四分位区间(IQR)。两端线为Tukey法判定的合理观测样本边界。箱体中实线为样本中位数,虚线为样本均值,空心点表示异常值。图B中数据为同一样点、不同取样期所有参试品种的均值。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。"

表3

玉米茎秆不同节间折断比例"

玉米季
Maize season
试验地点
Experimental site
占总折断率的比例 Percentage in total stalk broken rate (%)
第2节
Second internode
第3节
Third internode
第4节
Fourth internode
第5节
Fifth internode
其他
Others
夏玉米
Summer maize
河南新乡
Xinxiang, Henan
18.6 42.9 24.1 7.8 6.1
春玉米
Spring maize
新疆奇台
Qitai, Xinjiang
17.0 30.4 27.4 15.6 9.6

图2

玉米茎秆力学强度与茎折率之间的关系 **表示0.01 水平上相关显著。"

图3

玉米生理成熟后重心高度变化 图中不同小写字母分别表示不同取样期在0.05 水平下的差异显著。"

图4

玉米生理成熟后茎秆基部节间力学强度的变化 图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米; RPS: 穿刺强度; CS: 压碎强度; BS: 弯曲强度。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。"

图5

玉米生理成熟后茎秆基部节间干物质变化 图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米; DWUL, 单位长度干重。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。"

图6

玉米生理成熟后茎秆基部节间含水率变化 图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。"

表4

玉米生理成熟后茎秆抗折断力、基部节间力学强度、干物质积累及含水率相关性分析"

指标
Indicator
抗折断力
Breaking force
穿刺强度
Rind penetration strength
压碎强度
Crushing strength
弯曲强度
Bending strength
穿刺强度Rind penetration strength 0.6552**
压碎强度Crushing strength 0.6562** 0.7253**
弯曲强度Bending strength 0.7373** 0.5908** 0.6758**
单位长度干重 Dry weight per unit length 0.7356** 0.5432** 0.5836** 0.7311**
含水率Moisture content 0.5096** 0.4914** 0.4430** 0.5155**
[1] 李树岩, 马玮, 彭记永, 陈忠民 . 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究. 中国农业科学, 2015,48:3952-3964
Li S Y, Ma W, Peng J Y, Chen Z M . Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage. Sci Agric Sin, 2015,48:3952-3964 (in Chinese with English abstract)
[2] Pellerin S, Trendel R, Duparque A . Relationship between morphological characteristics and lodging susceptibility of maize (Zea mays L.). Agronomie, 1990,10:439-446
doi: 10.1051/agro:19900601
[3] Elmore R W, Ferguson R B . Mid-season stalk breakage in corn: Hybrid and environmental factors. J Prod Agric, 1999,12:293-299
doi: 10.2134/jpa1999.0293
[4] 黄璐, 乔江方, 刘京宝, 夏来坤, 朱卫红, 李川, 周庆伟 . 夏玉米不同密植群体抗倒性及机收指标探讨. 华北农学报, 2015,30(2):198-201
doi: 10.7668/hbnxb.2015.02.034
Huang L, Qiao J F, Liu J B, Xia L K, Zhu W H, Li C, Zhou Q W . Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density. Acta Agric Boreali-Sin, 2015,30(2):198-201 (in Chinese with English abstract)
doi: 10.7668/hbnxb.2015.02.034
[5] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬升, 王玉华 . 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016, ( 4):1-6
Li S K, Wang K R, Xie R Z, Hou P, Ming B, Yang X X, Han D S, Wang Y H . Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016, ( 4):1-6 (in Chinese with English abstract)
[6] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆 . 黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014, ( 2):76-79
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K . Research on corn mechanically harvesting grain quality in Huanghuaihai plain. Crops, 2014, ( 2):76-79 (in Chinese with English abstract)
[7] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, ( 2):88-92
doi: 10.16035/j.issn.1001-7283.2017.02.015
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017, ( 2):88-92 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2017.02.015
[8] 李少昆 . 玉米机械粒收质量影响因素及粒收技术发展方向. 石河子大学学报(自然科学版), 2017,35:265-272
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract)
[9] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.11.007
[10] Bruns H A, Abbas H K . Effects of harvest date on maize in the humid sub-tropical Mid-South USA. Maydica, 2004,49(1):1-7
doi: 10.1017/S0024282904014124
[11] Thomison P R, Mullen R W, Lipps P E, Doerge T, Geyer A B . Corn response to harvest date as affected by plant population and hybrid. Agron J, 2011,103:1765-1772
doi: 10.2134/agronj2011.0147
[12] Alien R R, Musick J T, Hollingsworth L D . Topping corn and delaying harvest for field drying. Trans ASABE, 1982,5:1529-1532
doi: 10.13031/2013.33760
[13] Nolte B H, Byg D M, Gill W E . Timely field operations for corn and soybeans in Ohio. The Ohio State University Cooperative Extension Service Bulletin 605,March, 1976
[14] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 玉米收获机械技术条件: GB/T 21962-2008
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China; China National Standardization Management Committee. Technical Requirements for Maize Combine Harvester: GB/T 21962-2008 (in Chinese with English abstract)
[15] Xue J, Gou L, Zhao Y, Yao M, Yao H, Tian J, Zhang W F . Effects of light intensity within the canopy on maize lodging. Field Crops Res, 2016,188:133-141
doi: 10.1016/j.fcr.2016.01.003
[16] Xue J, Zhao Y, Gou L, Shi Z, Yao M, Zhang W . How high plant density of maize affects basal internode development and strength formation. Crop Sci, 2016,56:3295-3306
doi: 10.2135/cropsci2016.04.0243
[17] Xue J, Gou L, Shi Z G, Zhao Y S, Zhang W F . Effect of leaf removal on photosynthetically active radiation distribution in maize canopy and stalk strength. J Integr Agric, 2017,16:85-96
doi: 10.1016/S2095-3119(16)61394-1
[18] Xue J, Xie R Z, Zhang W F, Wang K R, Hou P, Ming B, Gou L, Li S K . Research progress on reduced lodging of high-yield and -density maize. J Integr Agric, 2017,16:2717-2725
doi: 10.1016/S2095-3119(17)61785-4
[19] 勾玲, 黄建军, 张宾, 李涛, 孙锐, 赵明 . 群体密度对玉米茎秆抗倒力学和农艺性状的影响. 作物学报, 2007,33:1688-1695
doi: 10.3321/j.issn:0496-3490.2007.10.019
Gou L, Huang J J, Zhang B, Li T, Sun R, Zhao M . Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize. Acta Agron Sin, 2007,33:1688-1695 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2007.10.019
[20] Robertson D, Smith S, Gardunia B, Cook D . An improved method for accurate phenotyping of corn stalk strength. Crop Sci, 2014,54:2038-2044
doi: 10.2135/cropsci2013.11.0794
[21] Novacek M J, Mason S C, Galusha T D, Yaseen M . Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agron J, 2013,105:268-276
doi: 10.2134/agronj2012.0301
[22] 边大红, 刘梦星, 牛海峰, 魏钟博, 杜雄, 崔彦宏 . 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017,50:2294-2304
doi: 10.3864/j.issn.0578-1752.2017.12.010
Bian D H, Liu M X, Niu H F, Wei Z B, Du X, Cui Y H . Effects of nitrogen application times on stem traits and lodging of summer maize (Zea mays L.) in the Huang-Huai-Hai Plain. Sci Agric Sin, 2017,50:2294-2304 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.12.010
[23] Anderson B, White D . Evaluation of methods for identification of corn genotypes with stalk rot and lodging resistance. Plant Dis, 1994,78:590-593
doi: 10.1094/PD-78-0590
[24] Chen Y, Chen J, Zhang Y, Zhou D . Effect of harvest date on shearing force of maize stems. Livestock Sci, 2007,111:33-44
doi: 10.1016/j.livsci.2006.11.013
[25] Yu C, Saravanakumar K, Xia H, Gao J, Fu K, Sun J, Dou K, Jie C . Occurrence and virulence of Fusarium spp. associated with stalk rot of maize in North-East China. Physiol Mol Plant Pathol, 2017,98:1-8
doi: 10.1016/j.pmpp.2016.12.004
[26] 王亮, 丰光, 李妍妍, 景希强, 黄长玲 . 玉米倒伏与植株农艺性状和病虫害发生关系的研究. 作物杂志, 2016, ( 2):83-88
doi: 10.16035/j.issn.1001-7283.2016.02.015
Wang L, Feng G, Li Y Y, Jing X Q, Huang C L . Relationship between maize lodging resistance and agronomic traits, plant diseases, and insect pests. Crops, 2016, ( 2):83-88 (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2016.02.015
[27] 杨扬, 杨建宇, 李绍明, 张晓东, 朱德海, 刘哲, 米春桥, 肖开能 . 玉米倒伏胁迫影响因子的空间回归分析. 农业工程学报, 2011,27(6):244-249
doi: 10.3969/j.issn.1002-6819.2011.06.044
Yang Y, Yang J Y, Li S M, Zhang X D, Zhu D H, Liu Z, Mi C Q, Xiao K N . Spatial regression analysis on influence factors of maize lodging stress. Trans CSAE, 2011,27(6):244-249 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2011.06.044
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!