欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (2): 204-213.doi: 10.3724/SP.J.1006.2019.84085

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析

冯韬,官春云()   

  1. 湖南农业大学农学院 / 国家油料改良中心湖南分中心, 湖南长沙 410128
  • 收稿日期:2018-06-21 接受日期:2018-08-20 出版日期:2019-02-12 网络出版日期:2018-09-25
  • 通讯作者: 官春云
  • 基金资助:
    本研究由国家重点基础研究发展计划(973计划)项目资助(2015CB150206)

Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L.

Tao FENG,Chun-Yun GUAN()   

  1. College of Agronomy, Hunan Agricultural University / National Oilseed Crops Improvement Center in Hunan, Changsha 410128, Hunan, China
  • Received:2018-06-21 Accepted:2018-08-20 Published:2019-02-12 Published online:2018-09-25
  • Contact: Chun-Yun GUAN
  • Supported by:
    This study was supported by the National Basic Research Program (973 Program)(2015CB150206)

摘要:

光敏色素互作因子4 (phytochrome interacting factor 4, PIF4)是光信号途径关键转录因子, PIF4与BZR互作介导光信号与油菜素内酯信号互作, 参与植物光响应。本文在甘蓝型油菜湘油15号中克隆到2个PIF4基因, 分别定位于A03号染色体和C03号染色体, 命名为BnaPIF4_A03BnaPIF4_C03, 全长编码序列(coding sequence, CDS)、全长mRNA和全长基因分别为1242 bp和1245 bp、1701 bp和1731 bp、2527 bp和2665 bp, 各自编码413和414个氨基酸。BnaPIF4_A03具有7个外显子和6个内含子, BnaPIF4_C03具有8个外显子和7个内含子, 与测序品种中双11号相比, BnaPIF4_A03基因第1内含子存在单碱基插入突变, 第4和第6内含子存在缺失突变, 且具有更长的3'-UTR, 两基因其他序列在湘油15号和中双11号之间无差别。BnaPIF4_A03BnaPIF4_C03基因编码蛋白具有典型的植物bHLH结构域, 亚细胞定位于细胞核, 是典型的植物PIF4蛋白。多序列比对和进化分析表明, BnaPIF4蛋白与白菜、拟南芥、亚麻芥等PIF4蛋白高度同源。PIF4蛋白进化关系与物种进化关系一致, 近缘物种中的PIF4蛋白在进化树中高度聚类, 大量植物中可见PIF4蛋白重复且低等植物中分化程度明显低于高等植物中, 表明PIF4蛋白是一个晚期进化事件且可能存在功能冗余。酵母杂交实验表明BnaPIF4与BnaBZR蛋白存在互作, 但BnaPIF4不能与BnaBZR基因的启动子互作, 表明BnaPIF4BnaBZR在蛋白水平而非转录水平发生互作。湘油15号中BnaPIF4_A03BnaPIF4_C03基因表达规律一致, BnaPIF4基因主要表达于油菜茎表皮、未成熟角果和叶中, 在花和根中表达较低, 且其表达随油菜生育进程逐渐降低。

关键词: 甘蓝型油菜, 光敏色素互作因子4, 基因克隆, 基因互作, 基因表达, 生物信息学分析

Abstract:

Phytochrome interacting factor 4 (PIF4) is a key transcription factor in light signaling pathway of plants, PIF4 interacts with Brassinazole-resistant (BZR) to mediate the interaction between light signal and brassinosteroid signal and participates in plant photoresponse. In this study, two novel PIF4 gene were isolated from Brassica napus L. cv. Xiangyou 15, they were identified on chromosomes A03 and C03 and encoding 413 and 414 amino acids, respectively, named as BnaPIF4_A03 and BnaPIF4_C03, their coding sequence (CDS), full-length mRNA and full-length gene were 1242 bp and 1245 bp, 1701 bp and 1731 bp, 2527 bp and 2665 bp, respectively. BnaPIF4_A03 and BnaPIF4_C03 had seven and eight exons, six and seven introns, respectively. Compared with the sequenced Zhongshuang 11, BnaPIF4_A03 gene had a single base insertion mutation in the first intron, a deletion mutation in the fourth and sixth introns, and a longer 3'-UTR. Other sequences of the two genes did not differ between Xiangyou 15 and Zhongshuang 11. The BnaPIF4_A03 and BnaPIF4_C03 gene-encoded proteins had a typical plant bHLH domain and were subcellularly localized in the nucleus. They are typical plant PIF4 proteins. Multiple sequence alignment and phylogenetic analysis showed that the BnaPIF4 protein was highly homologous to the PIF4 protein of Brassica oleracea, Arabidopsis thalian, and Eruca sativa. The evolutionary relationship of PIF4 protein was consistent with that of species, and the PIF4 proteins in the closely related species are highly clustered in the phylogenetic tree. PIF4 protein repeats were observed in a large number of plants and the degree of differentiation of PIF4 was lower in lower plants than in higher plants. It indicates that PIF4 protein differentiation is a late evolutionary event and there may be functional redundancy in PIF4 protein. Yeast hybridization experiments showed that there were interactions between BnaPIF4 and BnaBZR proteins, but BnaPIF4 could not interact with the promoter of BnaBZR gene, indicating that BnaPIF4 interacts with BnaBZR at the protein level but not at the transcription level. The genes expression patterns of BnaPIF4_A03 and BnaPIF4_C03 in Xiangyou 15 were consistent. BnaPIF4 gene was mainly expressed in the green tissue of B. napus L., with higher expression levels in stem epidermis, immature pods and leaves, and lower expression levels in flowers and roots, and the gene expression level of BnaPIF4 gradually decreased in the development process of B. napus L.

Key words: Brassica napus L, phytochrome interacting factor 4, gene clone, interaction of gene, gene expression, bionformatic analysis

图1

BnaPIF4_A03和BnaPIF4_C03基因克隆 A: 编码序列; B: mRNA; C: 基因全长: M1: 2K DNA 标记; M2: 2K plus DNA标记; 1: BnaPIF4_A03: 2: BnaPIF4_C03。"

图2

BnaPIF4_A03和BnaPIF4_C03基因结构"

表1

BnaPIF4_A03和BnaPIF4_C03蛋白信息汇总表"

蛋白编号
Serial
number
氨基酸残基数
Number of amino acid residues
摩尔质量
Molar mass (Da)
等电点
Isoelectric point
BnaPIF4-A03 413 46,374.937 5.535
BnaPIF4-C03 414 46,260.633 5.595

图3

BnaPIF4_A03和BnaPIF4_C03蛋白二级结构"

表2

BnaPIF4_A03和BnaPIF4_C03蛋白特殊识别位点序列总表"

蛋白编号
Serial number
位点类型
Domains type
数量
Number
位置
Location
序列
Sequence
序列模式
Sequence motif
BnaPIF4_A03 PS00001 4 158-161, 185-188, 234-237, 253-256 NQSQ, NSSS, NKSN, NLSE N-{P}-[ST]-{P}
PS00005 7 43-45, 61-63, 242-244, 243-245, 255-257, 280-282, 400-402 THR, TLR, STR, TRR, SER, TDK, SQR [ST]-x-[RK]
PS00006 9 7-10, 43-46, 66-69, 97-100, 160-163, 162-165, 175-178, 226-229, 284-287 SFEE, THRD, TFLE, STID, SQTD, TDLD, TIDE, SQSD, SILE [ST]-x(2)-[DE]
PS00007 1 174-181 KTIDERLY [RK]-x(2,3)-[DE]-x(2,3)-Y
PS00008 8 156-161, 189-194, 190-195, 193-198, 232-237, 306-311, 308-313, 393-398 GSNQSQ, GGSSGC, GSSGCS, GCSLGK, GNNKSN, GSGMAG, GMAGAA, GSPAGQ G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00845 2 371-377, 368-377 GRYVGLF, DRFGRYVGLF [GD]-x(1)-[FYWA]-x(1)-G-[LIVM]-x(0)-[LIVMFYD]
BnaPIF4_C03 PS00001 4 13-16, 158-161, 185-188, 253-256 NLSN, NQSQ, NSSS, NLSE N-{P}-[ST]-{P}
PS00005 8 43-45, 61-63, 109-111, 242-244, 243-245, 255-257, 280-282, 400-402 THR, TLR, STR, TRR, SER, TDK, SQR, THR, TLR, TVK, STR, TRR, SER, TDK, SQR [ST]-x-[RK]
PS00006 10 7-10, 43-46, 66-69, 97-100, 160-163, 162-165, 175-178, 226-229, 278-281, 284-287 SFEE, THRD, TFLE, STID, SQTD, TDLD, TIDE, SQSD, TKTD, SILE [ST]-x(2)-[DE]
PS00007 1 174-181 KTIDERLY [RK]-x(2,3)-[DE]-x(2,3)-Y
PS00008 9 156-161, 189-194, 190-195, 193-198, 232-237, 239-244, 306-311, 308-313, 393-398 GSNQSQ, GGSSGC, GSSGCS, GCSLGK, GNNKSN, GSGSTR, GSGMAG, GMAGAA, GSPAGQ G-{EDRKHPFYW}-x(2)-[STAGCN]-{P}
PS00845 2 371-377, 368-377 GRYVGLF, DRFGRYVGLF [GD]-x(1)-[FYWA]-x(1)-G-[LIVM]-x(0)-[LIVMFYD]

图4

BnaPIF4氨基酸序列比对"

图5

不同植物PIF4蛋白的进化树分析 Arabidopsis thaliana: 拟南芥; Arabidopsis lyrata subsp. Lyrata: 深山南芥; Arachis ipaensis: 花生; Arachis duranensis: 曼花生; Brachypodium distachyon: 二穗短柄草; Brassica napus L.: 甘蓝型油菜; Brassica rapa L.: 白菜; Camelina sativa: 亚麻荠; Capsicum annuum: 辣椒; Capsella rubella: 碎米荠; Citrus clementina: 克莱门柚; Durio zibethinus: 榴莲; Elaeis guineensis: 油棕; Eutrema salsugineum: 盐芥; Glycine max: 大豆; Medicago truncatula: 苜蓿; Morus notabilis: 桑; Nicotiana sylvestris: 林烟草; Nicotiana tomentosiformis: 绒毛状烟草; Oryza sativa japonica Group: 水稻(粳); Prunus mume: 中国梅; Lupinus angustifolius: 狭叶羽扇豆; Sesamum indicum: 芝麻; Solanum lycopersicum: 番茄; Solanum pennellii: 小番茄; Sorghum bicolor: 高粱; Populus euphratica: 胡杨; Populus trichocarpa : 欧洲大叶杨; Prunus persica: 桃; Pyrus × bretschneideri: 鸭梨; Selaginella moellendorffii: 卷柏; Setaria italica: 狗 草; Tarenaya hassleriana: 醉蝶花; Theobroma cacao: 可可; Vigna angularis: 红豆; Vigna radiata: 绿豆; Vigna radiata var. radiata: 赤小豆; Solanum tuberosum: 马铃薯; Vitis vinifera: 酿酒葡萄; Zea mays: 玉米; Ziziphus jujuba: 枣。"

图6

BnaPIF4和BnaBZR/BES互作"

图7

不同发育时期的湘油15号根、茎、叶、花和角果中BnaPIF4_A03和BnaPIF4_C03的表达量 DAG表示种子萌发后天数。"

[1] 卢坤, 申鸽子, 梁颖, 符明联, 贺斌, 铁琳梅, 张烨, 彭柳, 李加纳 . 适合不同产量的环境下油菜高收获指数的产量构成因素分析. 作物学报, 2017,43:82-96.
doi: 10.3724/SP.J.1006.2017.00082
Lu K, Shen G Z, Liang Y, Fu M L, He B, Tie L M, Zhang Y, Peng L, Li J N . Analysis of yield components with high harvest index in Brassica napus under environments fitting different yield levels. Acta Agron Sin, 2017,43:82-96 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00082
[2] Irfan M, Alam J, Ahmad I, Ali I, Gul H . Effects of exogenous and foliar applications of brassinosteroid (BRs) and salt stress on the growth, yield and physiological parameters of Lycopersicon esculentum(Mill.). Plant Sci Today, 2017,4:88-101.
[3] Thussagunpanit J, Jutamanee K, Kaveeta L, Chaiarree W, Pankean P, Homvisasevongsa S, Suksamrarn A . Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul, 2015,34:320-331.
doi: 10.1007/s00344-014-9467-4
[4] Sahni S, Prasad B D, Liu Q, Grbic V, Sharpe A, Singh S P, Krishna P . Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep, 2016,6:28298.
doi: 10.1038/srep28298 pmid: 4915011
[5] Oh E, Zhu J Y, Wang Z Y . Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012,14:802-809.
doi: 10.1038/ncb2545 pmid: 22820378
[6] 杨剑飞, 王宇, 杨琳, 李玉花 . 光敏色素互作因子 PIFs 是整合多种信号调控植物生长发育的核心元件. 植物生理学报, 2014,50:1109-1118.
Yang J F, Wang Y, Yang L, Li Y H . Phytochrome-interacting factors integrate multiple signals to control plant growth and development. Plant Physiol J, 2014,50:1109-1118 (in Chinese with English abstract).
[7] Huq E, Quail P H . PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J, 2002,21:2441-2450.
doi: 10.1093/emboj/21.10.2441 pmid: 12006496
[8] Castillon A, Shen H, Huq E . Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci, 2007,12:514-521.
doi: 10.1016/j.tplants.2007.10.001
[9] Casson S A, Franklin K A, Gray J E, Grierson C S, Whitelam G C, Hetherington A M . Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol, 2009,19:229-234.
doi: 10.1016/j.cub.2008.12.046 pmid: 19185498
[10] Koini M A, Alvey L, Allen T, Tilley C A, Harberd N P, Whitelam G C, Franklin K A . High temperature-mediated adaptations inplant architecture require the bHLH transcription factor PIF4. Curr Biol, 2009,19:408-413.
doi: 10.1016/j.cub.2009.01.046 pmid: 19249207
[11] Franklin K A, Lee S H, Patel D, Kumar S V, Spartz A K, Gu C, Wigge P A . Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA, 2011,108:20231-20235.
doi: 10.1073/pnas.1110682108
[12] Xu H, Liu Q, Yao T, Fu X . Shedding light on integrative GA signaling. Curr Opin Plant Biol, 2014,21:89-95.
doi: 10.1016/j.pbi.2014.06.010 pmid: 25061896
[13] Bernardo-García S, Lucas M, Martínez C, Espinosa-Ruiz A, Davière J M, Prat S . BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev, 2014,28:1681-1694.
doi: 10.1101/gad.243675.114 pmid: 25085420
[14] 韩霜, 陈素梅, 蒋甲福, 房伟民, 管志勇, 陈发棣 . 弱光下菊花‘清露’的激素水平及相关基因表达. 中国农业科学, 2015,48:324-333.
doi: 10.3864/j.issn.0578-1752.2015.02.12
Han S, Chen S M, Jiang J F, Fang W M, Guan Z Y, Chen F T . Hormone levels and gene expression analysis of chrysanthemum cultivar ‘puma sunny’ under low light intensity. Sci Agric Sin, 2015,48:324-333 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.02.12
[15] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Corréa M . Early allopolyploid evolution in the post- Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953.
[16] Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez Gacía J F, Bilbao-Castro J R, Robertson D L . Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010,153:1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752
[17] Feller A, Machemer K, Braun E L, Grotewold E . Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011,66:94-116.
doi: 10.1111/j.1365-313X.2010.04459.x pmid: 21443626
[18] Surhone L M, Timpledon M T, Marseken S F. Rapeseed. Germany: Betascript Publishing, 2010. pp 6-8.
[19] Kumar S V, Lucyshyn D, Jaeger K E, Alós E, Alvey E, Harberd N P, Wigge P A . Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012,484:242-245.
doi: 10.1038/nature10928 pmid: 22437497
[20] Lucas M, Prat S . PIFs get BR right: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol, 2014,202:1126-1141.
doi: 10.1111/nph.12725 pmid: 24571056
[21] Choi H, Oh E . PIF4 integrates multiple environmental and hormonal signals for plant growth regulation in Arabidopsis. Mol Cell, 2016,39:587-593.
doi: 10.14348/molcells.2016.0126 pmid: 4990750
[22] Wei Z, Yuan T, Tarkowská D, Kim J, Nam H G, Novák O, Li J . Brassinosteroid biosynthesis is modulated via a transcription factor cascade of COG1, PIF4 and PIF5. Plant Physiol, 2017,174:1260-1273.
doi: 10.1104/pp.16.01778 pmid: 28438793
[23] Wang Z Y, Nakano T, Gendron J, He J, Chen M, Vafeados D, Chory J . Nuclear-localized BZR1 mediates brassinosteroid- induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell, 2002,2:505-513.
doi: 10.1016/S1534-5807(02)00153-3 pmid: 11970900
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[6] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[13] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[14] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!