欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1080-1089.doi: 10.3724/SP.J.1006.2019.84160

• 耕作栽培·生理生化 • 上一篇    下一篇

S3307对始花期和始粒期淹水绿豆光合作用及产量的影响

于奇1,冯乃杰1,王诗雅1,左官强1,郑殿峰1,2,*()   

  1. 1 黑龙江八一农垦大学农学院, 黑龙江大庆 163319
    2 黑龙江八一农垦大学国家杂粮工程技术研究中心, 黑龙江大庆 163319
  • 收稿日期:2018-11-26 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-08
  • 通讯作者: 郑殿峰
  • 作者简介:E-mail: yrkiyrki@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31871576);国家“十二五”科技支撑计划项目(2014BAD07B05)

Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress

YU Qi1,FENG Nai-Jie1,WANG Shi-Ya1,ZUO Guan-Qiang1,ZHENG Dian-Feng1,2,*()   

  1. 1 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2 National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2018-11-26 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-08
  • Contact: Dian-Feng ZHENG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871576);the National Key Technology Support Program of China for the 12th Five-Year Plan(2014BAD07B05)

摘要:

淹水胁迫是作物生长发育过程中遭受的主要非生物胁迫之一, 探究提高绿豆耐淹性的机制对绿豆抗涝栽培具有重要意义。本文在2017—2018年以耐淹性不同的绿豆品种绿丰2号和绿丰5号为试验材料, 采用盆栽方式探究了烯效唑(S3307)对淹水胁迫下绿豆叶片生理、光合作用及产量的影响。结果表明, 在不同生育时期淹水胁迫下, 绿豆叶片的叶绿素含量(SPAD)及光合特性参数均显著下降, 丙二醛(MDA)含量显著增加, 始花期(R1期)淹水胁迫下绿豆的减产率为24.70%~33.63%, 始粒期(R5期)减产率为18.07%~28.87%。2个绿豆品种均表现为R1期受淹水胁迫危害程度大于R5期, 绿丰2号耐淹性强于绿丰5号。喷施S3307后显著提高淹水胁迫下绿豆叶片的SPAD、净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs), 并显著降低了MDA含量。绿豆在R1期淹水胁迫下的缓解率为28.91%~52.34%, R5期缓解率为13.77%~27.36%。表明叶面喷施S3307可有效提高淹水胁迫下绿豆叶片的生理功能及光合能力, 进而降低减产幅度, 但不同淹水时期和绿豆品种对S3307的调控响应存在差异。

关键词: 绿豆, 烯效唑(S3307), 淹水胁迫, 光合作用, 产量

Abstract:

Waterlogging stress is one of the main abiotic stresses during the growth and development of crops. It is of great significance to explore the mechanisms for improving the flood resistance and waterlogging resistance cultivation of mung bean under waterlogging stress. In this experiment, the effects of uniconazole (S3307) on physiology, photosynthesis and yield of mung bean leaves under waterlogging stress were investigated in pot culture with different flood resistance mung bean varieties Lufeng 2 and Lufeng 5 from 2017 to 2018. Under the stress of waterlogging at different growth stages, the chlorophyll content (SPAD) and photosynthetic characteristic parameters of mung beans leaves were significantly decreased, malondialdehyde (MDA) content was significantly increased. The yield reduction rate of mung beans under the stress of waterlogging was 24.70%-33.63% at the beginning bloom (R1 stage), and 18.07%-28.87% at the beginning seed (R5 stage). Both mung bean varieties showed that the effect of waterlogging stress at R1 stage was greater than that at R5 stage, and the flood resistance of Lufeng 2 was stronger than that of Lufeng 5. After S3307 sprayed, SPAD, net photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) in the leaves of mung beans could be significantly increased and MDA content could be significantly decreased. The remission rate of mung beans under waterlogging stress was 28.91%-52.34% at R1 stage, and 13.77%-27.36% at R5 stage. The results showed that S3307 sprayed on the leaf surface could effectively alleviate the physiological function and photosynthetic capacity of mung bean leaves under the stress of waterlogging, thus reduce the yield reduction, but there were differences in the regulatory response of mung bean varieties to S3307 in different waterlogging periods.

Key words: mung bean, uniconazole (S3307), waterlogging stress, photosynthesis, yield

图1

S3307对R1期和R5期淹水胁迫下绿豆叶片SPAD的影响 R1CK: 始花期对照; R1W: 始花期喷施蒸馏水后淹水胁迫处理; R1W+S: 始花期喷施S3307后淹水胁迫处理; R5CK: 始粒期对照; R5W: 始粒期喷施蒸馏水后淹水胁迫处理; R5W+S: 始粒期喷施S3307后淹水胁迫处理。R1-0: 始花期喷施蒸馏水或S3307; R1-5: 始花期后5 d (即喷药5 d后); R1-10: 始花期后10 d (即淹水5 d后); R1-15: 始花期后15 d (即胁迫解除5 d后), R5-0: 始粒期喷施蒸馏水或S3307; R5-5: 始粒期后5 d (即喷药5 d后); R5-10: 始粒期后10 d (即淹水5 d后); R5-15: 始粒期后15 d (即胁迫解除5 d后)。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图2

S3307对R1期和R5期淹水胁迫下绿豆叶片MDA含量的影响 缩写同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图3

S3307对R1期和R5期淹水胁迫下绿豆叶片净光合速率的影响 缩写同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图4

S3307对R1期和R5期淹水胁迫下绿豆叶片蒸腾速率的影响 缩写同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图5

S3307对R1期和R5期淹水胁迫下绿豆叶片气孔导度的影响 缩写同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

图6

S3307对R1期和R5期淹水胁迫下绿豆叶片胞间CO2浓度的影响 缩写同图1。同天内标以不同字母的值在P = 0.05水平上差异显著。"

表1

S3307对R1期和R5期淹水胁迫下绿豆产量及产量构成因素的影响(2017年)"

品种
Cultivar
处理
Treatment
单株荚数
Pods per plant
单荚粒数
Seeds per pod
百粒重
Hundred grain weight (g)
单株产量
Yield per plant (g)
绿丰2号
Lufeng 2
R1CK 18.55 ± 1.32 a 7.91 ± 0.43 a 3.60 ± 0.10 a 4.78 ± 0.06 a
R1W 13.25 ± 0.35 b 7.46 ± 0.29 a 3.69 ± 0.27 a 3.60 ± 0.46 b
R1W+S 19.70 ± 0.44 a 7.60 ± 0.27 a 3.76 ± 0.05 a 4.77 ± 0.09 a
绿丰5号
Lufeng 5
R1CK 16.45 ± 1.12 a 9.23 ± 0.62 a 5.12 ± 0.01 a 7.19 ± 0.11 a
R1W 11.35 ± 0.69 b 8.36 ± 0.57 a 4.56 ± 0.06 b 5.07 ± 0.09 c
R1W+S 17.75 ± 0.48 a 8.75 ± 0.34 a 5.21 ± 0.05 a 6.53 ± 0.05 b
绿丰2号
Lufeng 2
R5CK 18.55 ± 1.17 a 7.85 ± 0.42 a 3.65 ± 0.12 a 5.12 ± 0.11 a
R5W 18.50 ± 0.31 a 6.73 ± 0.16 b 3.21 ± 0.06 b 4.04 ± 0.86 b
R5W+S 18.70 ± 0.72 a 7.66 ± 0.42 a 3.66 ± 0.09 a 5.15 ± 0.03 a
绿丰5号
Lufeng 5
R5CK 16.45 ± 1.01 a 9.02 ± 0.59 a 5.44 ± 0.09 a 6.93 ± 0.08 a
R5W 16.50 ± 0.66 a 7.64 ± 0.38 b 4.07 ± 0.25 b 5.18 ± 0.30 c
R5W+S 16.75 ± 0.48 a 8.20 ± 0.32 ab 4.44 ± 0.03 b 6.26 ± 0.09 b

表2

S3307对R1期和R5期淹水绿豆产量及产量构成因素的影响(2018年)"

品种
Cultivar
处理
Treatment
单株荚数
Pods per plant
单荚粒数
Seeds per pod
百粒重
Hundred grain weight (g)
单株产量
Yield per plant (g)
绿丰2号
Lufeng 2
R1CK 19.25 ± 0.94 a 7.71 ± 0.33 a 3.62 ± 0.06 a 4.87 ± 0.04 a
R1W 13.75 ± 0.40 b 7.31 ± 0.47 a 3.63 ± 0.27 a 3.55 ± 0.33 b
R1W+S 20.05 ± 0.28 a 7.45 ± 0.25 a 3.64 ± 0.06 a 4.75 ± 0.09 a
绿丰5号
Lufeng 5
R1CK 16.70 ± 0.91 a 8.65 ± 0.45 a 5.20 ± 0.02 a 7.26 ± 0.08 a
R1W 11.90 ± 0.93 b 7.10 ± 0.36 b 5.28 ± 0.09 a 4.82 ± 0.12 b
R1W+S 18.00 ± 0.51 a 8.16 ± 0.44 ab 5.33 ± 0.05 a 7.34 ± 0.04 a
绿丰2号
Lufeng 2
R5CK 19.25 ± 0.94 a 7.71 ± 0.33 a 3.62 ± 0.06 b 4.87 ± 0.04 a
R5W 19.00 ± 0.41 a 6.80 ± 0.12 b 3.95 ± 0.06 a 3.99 ± 0.08 c
R5W+S 19.60 ± 0.56 a 7.31 ± 0.31 ab 3.58 ± 0.12 b 4.54 ± 0.05 b
绿丰5号
Lufeng 5
R5CK 16.70 ± 0.91 a 8.65 ± 0.45 a 5.20 ± 0.02 a 7.26 ± 0.08 a
R5W 16.30 ± 1.00 a 7.20 ± 0.49 c 5.02 ± 0.26 a 5.16 ± 0.31 c
R5W+S 16.85 ± 0.67 a 8.00 ± 0.28 b 5.07 ± 0.02 a 6.25 ± 0.06 b

表3

2017-2018年R1期和R5期淹水胁迫下绿豆单株产量的减产率及缓解率"

品种
Cultivar
时期
Stage
2017 2018
减产率
Yield reduction rate
缓解率
Remission rate
减产率
Yield reduction rate
缓解率
Remission rate
绿丰2号
Lufeng 2
R1 -24.70 32.40 -27.16 34.08
R5 -21.03 27.36 -18.07 13.77
绿丰5号
Lufeng 5
R1 -29.54 28.91 -33.63 52.34
R5 -25.35 20.86 -28.87 21.18
[1] Chen L R, Ko C Y, Folk W R, Lin T Y . Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. Bot Stud, 2017,58, doi: 10.1186/s40529-017- 0161-2.
[2] Noble T, Douglas C, Williams R, Williams B, Mundree S. Development of the mungbean nested association mapping (NAM) resource. In: InterDrought V, 21-25 February 2017, Hyderabad, India. pp 21-25. .
[3] Kumawat N, Kumar R, Sharma O P . Nutrient uptake and yield of mungbean Vigna radiata(L.) Wilczek as influenced by organic manures, PSB and phosphorus fertilization. Environ Ecol, 2009,27:2002-2005.
[4] Bhanu A N, Singh M N, Srivastava K . Screening mungbean [Vigna radiata(L.) Wilczek] genotypes for mungbean yellow mosaic virus resistance under natural condition. Plants Agric Res, 2017,7:00276.
[5] Ren B, Dong S, Zhao B, Liu P, Zhang J . Responses of nitrogen metabolism, uptake and translocation of maize to waterlogging at different growth stages. Front Plant Sci, 2017,8, doi: 10.3389/fpls.2017.01216.
[6] Xu Q T, Yang L, Zhou Z Q, Mei F Z, Qu L H, Zhou G S . Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta, 2013,238:969-982.
doi: 10.1007/s00425-013-1947-4
[7] Shabala S . Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 2011,190:289-298.
[8] Voesenek L A, Sasidharan R . Ethylene- and oxygen signaling- drive plant survival during flooding. Plant Biol, 2013,15:426-435.
doi: 10.1111/plb.2013.15.issue-3
[9] Shabala S, Shabala L, Barcelo J, Poschenrieder C . Membrane transporters mediating root signalling and adaptive responses to oxygen deprivation and soil flooding. Plant Cell Environ, 2015,37:2216-2233.
[10] Zhang H J, Li N H, Cheng X Z, Katinka W . The impact of mungbean research in China. World Vegetable Center, Taiwan (AVRDC), China, 2003, .
[11] 张娇, 王东勇, 朱佳宁, 郑媛媛, 姚叶青 . 淮河流域持续性强降水的重要前期信号. 气象, 2011,37:1329-1335.
Zhang J, Wang D Y, Zhu J N, Zheng Y Y, Yao Y Q . The precursor signals of persistent and strong precipitation along the Huaihe River Valley. Meteorol Monthly, 2011,37:1329-1335 (in Chinese with English abstract).
[12] Normile D . Reinventing rice to feed the world. Science, 2008,321:330-333.
doi: 10.1126/science.321.5887.330
[13] 周珺, 魏虹, 吕茜, 李昌晓, 王振夏, 高伟, 陈伟 . 土壤水分对湿地松幼苗光合特征的影响. 生态学杂志, 2012,31:30-37.
Zhou J, Wei H, Lyu Q, Li C X, Wang Z X, Gao W, Chen W . Effects of soil water regime on leaf photosynthetic characteristics of slash pine (Pinus elliottii Engelm.) seedlings. Chin J Ecol, 2012,31:30-37 (in Chinese with English abstract).
[14] 孙小艳, 陈铭, 李彦强, 吴照祥, 钟永达, 余发新 . 淹水胁迫下北美鹅掌楸无性系生理生化响应差异. 植物生理学报, 2018,54:473-482.
Sun X Y, Chen M, Li Y Q, Wu Z X, Zhong Y D, Yu F X . Variations in physiological and biochemical responses in clones of Liriodendron tulipifera under flooding stress. Plant Physiol J, 2018,54:473-482 (in Chinese with English abstract).
[15] 曹昀, 郑祥, 杨阳, 陈冰祥, 国志昌, 吴海英 . 淹水对灰化苔草幼苗生长及抗氧化物酶活性的影响. 生态学杂志, 2016,35:3273-3278.
Cao Y, Zheng X, Yang Y, Chen B X, Guo Z C, Wu H Y . Effects of waterlogging on the growth and antioxidant enzyme activity of Carex cinerascens seedlings. Chin J Ecol, 2016,35:3273-3278 (in Chinese with English abstract).
[16] 僧珊珊, 王群, 张永恩, 李潮海, 刘天学, 赵龙飞, 刘怀攀 . 外源亚精胺对淹水胁迫玉米的生理调控效应. 作物学报, 2012,38:1042-1050.
Seng S S, Wang Q, Zhang Y E, Li C H, Liu T X, Zhao L F, Liu H P . Effects of exogenous spermidine on physiological regulatory of maize after waterlogging stress. Acta Agron Sin, 2012,38:1042-1050 (in Chinese with English abstract).
[17] 余卫东, 冯利平, 胡程达, 彭记永 . 苗期涝渍对黄淮地区夏玉米生长和产量的影响. 生态学杂志, 2015,34:2161-2166.
Yu W D, Feng L P, Hu C D, Peng J Y . Effects of waterlogging during seedling stage on the growth and yield of summer maize in Huang-Huai region. Chin J Ecol, 2015,34:2161-2166 (in Chinese with English abstract).
[18] 李彩霞, 周新国, 王和州, 郭冬冬, 郭树龙, 陈金平, 姜新 . 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响. 麦类作物学报, 2013,33:1232-1236.
Li C X, Zhou X G, Wang H Z, Guo D D, Guo S L, Chen J P, Jiang X . Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage. J Trit Crops, 2013,33:1232-1236 (in Chinese with English abstract).
[19] Duhan S, Kumari A, Bala S, Sharma N, Sheokand S . Effects of waterlogging, salinity and their combination on stress indices and yield attributes in pigeonpea (Cajanus cajan L. Millsp.) genotypes. Ind J Plant Physiol, 2018,23:1-12.
[20] 李金航, 郭丽丽, 孔祥生, 张淑玲, 闫臻 . 6-BA和GA3对牡丹叶片衰老过程中生理特性的影响. 植物生理学报, 2014,50:1243-1247.
Li J H, Guo L L, Kong X S, Zhang S L, Yan Z . Effects of 6-BA and GA3 on physiological characteristics during leaf senescence of Paeonia suffruticosa, Plant Physiol J, 2014,50:1243-1247 (in Chinese with English abstract).
[21] Noguchli H . New plant growth regulators and S-3307D. Jpn Pestic Inf, 1987,51:15-22.
[22] Zhen H L, Yan Z H, Feng L J . Effects of chlormequat chloride on the growth and endogenous hormones contents of Dahlia pinnata and their correlation analysis. Prat Sci, 2012,29:76-82.
[23] 张洪鹏, 张盼盼, 李冰, 李东, 刘文彬, 冯乃杰, 郑殿峰 . 烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响. 中国油料作物学报, 2016,38:611-618.
Zhang H P, Zhang P P, Li B, Li D, Liu W B, Feng N J, Zheng D F . Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress. Chin J Oil Crop Sci, 2016,38:611-618 (in Chinese with English abstract).
[24] Spent J E, Hume D J, Kumudini S V . Soybean yield potential: a genetic and physiological perspective. Crop Sci, 1999,39:1560-1570.
doi: 10.2135/cropsci1999.3961560x
[25] 刘洋, 郑殿峰, 冯乃杰, 张盼盼, 陈文浩, 张红梅 . 鼓粒期叶施烯效唑对绿豆各器官糖分积累及籽粒产量的影响. 中国农学通报, 2015,31(30):143-148.
Liu Y, Zheng D F, Feng N J, Zhang P P, Chen W H, Zhang H M . Effect of foliar spraying uniconazole in seed filling period on sugar accumulation in various organs and grain yield of mung bean. Chin Agric Bull, 2015,31(30):143-148 (in Chinese with English abstract).
[26] Wan Y, Luo Q M, Yan Y H, Yang W Y, Cao X N . Response of morphological characters of soybean to application of growth retardant (uniconazole) at third trifoliate stage. Res Crops, 2013,14:792-797.
[27] Yan Y H, Gong W Z, Yang W Y, Wan Y, Chen X L, Chen Z Q, Wang L Y . Seed treatment with uniconazole powder improve soybean seedling growth under shading by corn in relay strip intercropping system. Plant Prod Sci, 2010,13:367-374.
doi: 10.1626/pps.13.367
[28] 曾红, 王小春, 陈国鹏, 陈诚, 蒲甜, 彭霄, 刘婷, 宋靖, 阳苏书, 杨文钰 . 喷施烯效唑对玉米-大豆套作群体株型及产量的影响. 核农学报, 2016,30:1420-1426.
Zeng H, Wang X C, Chen G P, Chen C, Pu T, Peng X, Liu T, Song J, Yang S S, Yang W Y . Effects of spraying uniconazole on morphological and yield of groups in maize-soybean strip intercropping system. J NucI Agric Sci, 2016,30:1420-1426 (in Chinese with English abstract).
[29] 杨文钰, 于振文, 余松烈, 樊高琼, 韩惠芳, 董兆勇, 梁雪莲 . 烯效唑干拌种对小麦的增产作用. 作物学报, 2004,30:502-506.
Yang W Y, Yu Z W, Yu S L, Fan G Q, Han H F, Dong Z Y, Liang X L . Effect of uniconazole waterless-dressing seed on yield of wheat. Acta Agron Sin, 2004,30:502-506 (in Chinese with English abstract).
[30] Gawad M H, Batal M A . Response of maize productivity to the growth retardant “Uniconazole” under high nitrogen fertilization and plant density. Early Popular Visual Culture, 1996,10:553-556.
[31] Kumar G N M, Knowles N R . Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol, 1993,102:115-124.
[32] Liu X Z, Huang B R . Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci, 2000,40:503-510.
doi: 10.2135/cropsci2000.402503x
[33] 高小丽, 孙健敏, 高金锋, 冯佰利, 柴岩, 贾志宽 . 不同基因型绿豆叶片光合性能研究. 作物学报, 2007,33:1154-1161.
Gao X L, Sun J M, Gao J F, Feng B L, Chai Y, Jia Z K . Photosynthetic performance in the leaves of different mung bean genotypes. Acta Agron Sin, 2007,33:1154-1161 (in Chinese with English abstract).
[34] 曹旖旎, 蔡泽宇, 李晓刚, 张建锋, 陈光才 . 土壤淹水和铜污染对杞柳形态及生理生化特性的影响. 生态学杂志, 2018, doi: 10.13292/j.1000-4890.201902.017.
Cao Y N, Cai Z Y, Li X G, Zhang J F, Chen G C . Effects of flooding and copper stress on phenotypic and physiological characteristics of Salix integra seedlings. Chin J Ecol, 2018, doi: 10.13292/j.1000-4890.201902.017 (in Chinese with English abstract).
[35] 孟娜, 徐航, 魏明, 魏胜华 . 叶面喷施烯效唑对盐胁迫下大豆幼苗生理及解剖结构的影响. 西北植物学报, 2017,37:1988-1995.
Meng N, Xu H, Wei M, Wei S H . Effect of foliar uniconazole spaying under salt stress on physiological and anatomical characteristics in Glycine max. Acta Bot Boreali-Occident Sin, 2017,37:106-113 (in Chinese with English abstract).
[36] 孙福东, 冯乃杰, 郑殿峰, 崔洪秋, 刘春娟, 何天明, 赵晶晶 . 植物生长调节剂S3307和DTA-6对大豆荚的生理代谢及GmAC的影响. 中国农业科学, 2016,49:1267-1276.
Sun F D, Feng N J, Zheng D F, Cui H Q, Liu C J, He T M, Zhao J J . Effects of plant growth regulators S3307 and DTA-6 on physiological metabolism and GmAC gene expression in soybean. Sci Agric Sin, 2016,49:1267-1276 (in Chinese with English abstract).
[37] Chen H J, Qualls R G, Blank R R . Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium. Aquat Bot, 2005,82:260-268.
[38] 王畅, 赵海东, 冯乃杰, 郑殿峰, 梁晓艳, 齐德强, 李建英, 韩毅强, 黄文婷 . S3307和DTA-6对芸豆生殖生长阶段光合特性和产量的影响. 草业学报, 2018,27(11):162-170.
Wang C, Zhao H D, Feng N J, Zheng D F, Liang X Y, Qi D Q, Li J Y, Han Y Q, Huang W T . Effects of S3307 and DTA-6 on the photosynthetic characteristics and yield of kidney bean plants in the reproductive stage. Acta Pratac Sin, 2018,27(11):162-170 (in Chinese with English abstract).
[39] 宮相伟, 刘春娟, 冯乃杰, 郑殿峰, 王畅 . S3307和DTA-6对大豆不同冠层叶片光合特性及产量的影响. 植物生理学报, 2017,53:1867-1876.
Gong X W, Liu C J, Feng N J, Zheng D F, Wang C . Effects of plant growth regulators S3307 and DTA-6 on photosynthetic characteristics and yield in soybean canopy. Plant Physiol J, 2017,53:1867-1876 (in Chinese with English abstract).
[40] 李宁毅, 时彦平, 王吉振 . 水分胁迫下烯效唑对百日草幼苗光合特性及叶解剖结构的影响. 西北植物学报, 2012,32:1626-1631.
Li N Y, Shi Y P, Wang J Z . Effect of Uniconazole on photosynthetic characters and leaf anatomical structure of zinnia seedings under water stress. Acta Bot Boreali-Occident Sin, 2012,32:1626-1631 (in Chinese with English abstract).
[41] Chaves M M, Pereira J S, Maroco J, Rodrigues M L, Ricardo C P P, Osorio M L, Carvalho I, Faria T, Pinheiro C . How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot, 2002,89:907-916.
doi: 10.1093/aob/mcf105
[42] Antonio O V, Francisco G S, Silvia S G, Inmaculada S, Vicente L, Manuel N, Juan J M N . Physiological responses of three pomegranate cultivars under flooded conditions. Sci Hortic, 2017,224:171-179.
doi: 10.1016/j.scienta.2017.06.013
[43] 汪惠芳, 陈润兴 . S3307对秋大豆株型和产量的影响. 植物生理学通讯, 1997,33:181-183.
Wang H F, Chen R X . The effect of S3307 on plant-form and yield of autumn soybean. Plant Physiol Commun, 1997,33:181-183 (in Chinese with English abstract).
[44] Linkemer G, Board J E, Musgrave M E . Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci, 1998,38:1576-1584.
doi: 10.2135/cropsci1998.0011183X003800060028x
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!