作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1208-1216.doi: 10.3724/SP.J.1006.2020.94183
陈明俊1,舒启琼3,徐建飞2,罗小波1,雷尊国1,金黎平2,*(),李飞1,*()
CHEN Ming-Jun1,SHU Qi-Qiong3,XU Jian-Fei2,LUO Xiao-Bo1,LEI Zun-Guo1,JIN Li-Ping2,*(),LI Fei1,*()
摘要:
马铃薯块茎易受到损伤引发褐变, 褐变会对其营养、感官品质和安全性造成影响。不同马铃薯品种材料抗褐变能力存在差异, 本研究拟测定27份不同马铃薯种质材料的多酚氧化酶活性、褐变强度、褐变指数和煮后褐变4个褐变相关指标, 综合分析以实现对不同马铃薯品种(系)抗褐变能力的鉴定与筛选。结果表明, 27份材料可分为4种类型, 第1类高抗褐变, 包括09306-82和13041-52, 它们4项指标均能满足抗褐变材料的要求; 第2类抗褐变材料, 包括延薯4号、Q8、12-1、春薯3号、19-1、14018-142、大西洋、龙薯12号、威芋5号、丽薯6号、春薯5号和早大白, 它们的褐变相关指标存在个别明显不足; 第3类中度褐变材料, 包括09001-136、中薯5号、龙薯4号、东农310、青薯9号、15-1、云薯505、BF006、闽薯1号和黔芋8号, 其抗褐变能力弱; 第4类是易褐变材料, 包括春薯6号和费乌瑞它, 它们不具有抗褐变能力或抗褐变能力非常差。筛选的高抗褐变和抗褐变品种(系)可以作为鲜食抗褐变马铃薯育种材料, 为马铃薯净菜加工提供品种支撑, 易褐变材料可用于马铃薯褐变机制的基础性研究。
[1] | 胡军, 段绍光, 徐建飞, 卞春松, 李广存, 庞万福, 金黎平. 马铃薯块茎褐变相关研究进展. 见: 屈冬玉, 陈伊里主编. 马铃薯产业与脱贫攻坚(2018). 哈尔滨: 哈尔滨地图出版社, 2018. pp 119-123. |
Hu J, Duan S G, Xu J F, Bian C S, Li G C, Pang W F, Jin L P. Research progress of potato tuber browning. In: Qu D Y, Chen Y L, eds. Potato Industry and Poverty Alleviation (2018). Harbin: Harbin Map Press, 2018. pp 119-123(in Chinese). | |
[2] | Shepherd L V T, Alexander C J, Hackett C A, McRae D, Sungurtas J A, Verrall S R, Morris J A, Hedley P E, Rockhold D, Belknap W, Davies H V. Impacts on the metabolome of down-regulating polyphenol oxidase in potato tubers. Trans Res, 2015,24:447-461. |
[3] | Chang Y L, Kagan L V, Antoni W J, Susan K B. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J Agric Food Chem, 1990,38:99-101. |
[4] |
Mcevily A J, Iyengar R, Otwell W S. Inhibition of enzymatic browning in foods and beverages. Crit Rev Food Sci, 1992,32:253-273.
doi: 10.1080/10408399209527599 |
[5] | Keilin D, Mann T. Polyphenol oxidase purification, nature and properties. Proc Royal Soc London Series B, Biol Sci, 1938,125:187-204. |
[6] | Capitani C D, Carvalho A C L, Botelho P B, Carrapeiro M M, Castro I A. Synergism on antioxidant activity between natural compounds optimized by response surface methodology. Eur J Lipid Sci Technol, 2009,111:1100-1110. |
[7] | Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi M M, Pavan S, Montemurro C. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci, 2017,18:377. |
[8] | 赵欣, 周婧, 陈湘宁, 许丽, 杨肖飞, 刘建新. OPP/CPP 膜中不同气体比例对鲜切马铃薯片保鲜的影响. 食品工业科技, 2017,38(17):207-211. |
Zhao X, Zhou J, Chen X N, Xu L, Yang X F, Liu J X. Effect of different gas compositions in the OPP/CPP film on preservation of fresh-cut potato chips. Sci Technol Food Ind, 2017,38(17):207-211 (in Chinese with English abstract). | |
[9] | Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. J Funct Foods, 2015,18:820-897. |
[10] | 苏霞, 吴厚玖. 橙汁非酶褐变机制及控制措施. 食品与发酵工业, 2011,37(7):148-151. |
Su X, Wu H J. Non-enzymatic Browning of orange juice and its control measures. Food Ferment Ind, 2011,37(7):148-151 (in Chinese). | |
[11] | Mishra B B, Gautam S, Sharma A. Browning of fresh-cut eggplant: impact of cutting and storage. Postharvest Biol Technol, 2012,67:44-51. |
[12] | 姜莉, 林长彬, 张明兰, 张洪福, 徐怀德. 超高压对马铃薯多酚氧化酶和过氧化物酶的钝化研究. 食品工业, 2013, (1):141-143. |
Jiang L, Lin C B, Zhang M L, Zhang H F, Xu H D. Study on deactivation of ultra-high voltage to the potato polyphenoloxidase and the peroxide enzyme. Food Ind, 2013, (1):141-143 (in Chinese with English abstract). | |
[13] | Siddiq M, Sinha N K, Cash J N. Characterization of polyphenol oxidase from Stanley plums. J Food Sci, 1992,57:1177-1179. |
[14] |
Waltz E. USDA approves next-generation GM potato. Nat Biotechnol, 2015,33:12-13.
pmid: 25574623 |
[15] |
Murata M, Nishimura M, Murai N, Haruta M, Homma S, Itoh Y. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Biosci Biotechnol Biochem, 2001,65:383-388.
pmid: 11302173 |
[16] |
Ali H M, El-Gizawy A M, El-Bassiouny R E, Saleh M A. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chem, 2016,192:879-885.
doi: 10.1016/j.foodchem.2015.07.100 pmid: 26304424 |
[17] |
Cantos E, Tudela J A, Gil M I, Espinet J C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J Agric Food Chem, 2002,50:3015-3023.
doi: 10.1021/jf0116350 pmid: 11982435 |
[18] |
Cabezas-Serrano A B, Amodio M L, Cornacchia R, Rinaldi R, Colelli G. Suitability of five different potato cultivars ( Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol Technol, 2009,53:138-144.
doi: 10.1016/j.postharvbio.2009.03.009 |
[19] | 庞学群, 张昭其. 防褐处理对切分马蹄、马铃薯低温贮藏期间褐变的影响. 食品科学, 2002,23(4):126-129. |
Pang X Q, Zhang Z Q. Effects of anti-browning treatments on Browning of split-hoof and potato during low temperature storage. Food Sci, 2002,23(4):126-129 (in Chinese with English abstract). | |
[20] | 李山云, 隋启君, 白建明, 杨琼芬, 李文鹏. 抗机械损伤褐变马铃薯品种(系)的筛选. 中国马铃薯, 2010,24(4):193-196. |
Li S Y, Sui Q J, Bai J M, Yang Q F, Li W P. Screening of potato ( Solanum tuberosum L.) cultivars (lines) for browning tolerance responding to mechanical stress. Chin Potato J, 2010,24(4):193-196 (in Chinese with English abstract). | |
[21] | 王清, 黄惠英, 马文芳, 王蒂. 反义PPO基因对马铃薯块茎褐化的影响. 作物学报, 2007,33:1822-1827. |
Wang Q, Huang H Y, Ma W F, Wang D. Effect of anti-sense PPO gene on the tuber-browning of Solanum tuberosum L. Acta Agron Sin, 2007,33:1822-1827 (in Chinese with English abstract). | |
[22] | 王唯俊. 荷兰马铃薯高世代无性系产量及品质分析. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2011. |
Wang W J. Analysis of Agronomic and Quality Traits in Advanced Dutch Potato Clones. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2011 (in Chinese with English abstract). | |
[23] | 王丽, 王万兴, 索海翠, 胡新喜, 秦玉芝, 曾璐, 李小波, 熊兴耀. 马铃薯块茎酶促褐变及与相关生理指标的关系. 园艺学报, 2019,46:1519-1530. |
Wang L, Wang W X, Suo H C, Hu X X, Qin Y Z, Zeng L, Li X B, Xiong X Y. The relationship between enzymatic browning and relevant physiological index of potato tubers. Acta Hortic Sin, 2019,46:1519-1530 (in Chinese with English abstract). | |
[24] | 王海艳, 王立春, 李凤云, 田国奎, 娄树宝, 李成君, 郝智勇. 马铃薯抗褐变种质资源的鉴定与筛选. 植物遗传资源学报, 2018,19:263-270. |
Wang H Y, Wang L C, Li F Y, Tian G K, Lou S B, Li C J, Hao Z Y. Identification and selection for potato anti-browning germplasm resources. J Plant Genetic Resour, 2018,19:263-270 (in Chinese with English abstract). |
[1] | 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278. |
[2] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[3] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[4] | 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929. |
[5] | 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694. |
[6] | 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258. |
[7] | 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98. |
[8] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[9] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[10] | 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612. |
[11] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[12] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
[13] | 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331. |
[14] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[15] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
|