欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1208-1216.doi: 10.3724/SP.J.1006.2020.94183

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗褐变马铃薯品种(系)鉴定与筛选

陈明俊1,舒启琼3,徐建飞2,罗小波1,雷尊国1,金黎平2,*(),李飞1,*()   

  1. 1贵州省农业科学院马铃薯研究所/国家马铃薯改良中心贵州分中心, 贵州贵阳 550006
    2中国农业科学院蔬菜花卉研究所, 北京 100081
    3贵州师范大学生命科学学院, 贵州贵阳 550000
  • 收稿日期:2019-11-25 接受日期:2020-03-24 出版日期:2020-08-12 网络出版日期:2020-04-26
  • 通讯作者: 金黎平,李飞
  • 作者简介:陈明俊, E-mail: 18286033948@163.com|舒启琼, E-mail: shuqiqiong@163.com
  • 基金资助:
    国家重点研发计划子课题优质多抗适应性强马铃薯新品种培育(2017YFD0101905);贵州省现代农业国际科技合作基地(黔科合平台人才[2019]5804号)

Identification and selection for anti-browning potato varieties (lines)

CHEN Ming-Jun1,SHU Qi-Qiong3,XU Jian-Fei2,LUO Xiao-Bo1,LEI Zun-Guo1,JIN Li-Ping2,*(),LI Fei1,*()   

  1. 1Institute of Potato, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    2Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Life Sciences, Guizhou Normal University, Guiyang 550000, Guizhou, China
  • Received:2019-11-25 Accepted:2020-03-24 Published:2020-08-12 Published online:2020-04-26
  • Contact: Li-Ping JIN,Fei LI
  • Supported by:
    Sub-Project of the National Key Research and Development Plan (Cultivation of New Potato Varieties with High Quality, Multi Resistance and Strong Adaptability of China)(2017YFD0101905);Modern Agriculture International Science and Technology Cooperation Base of Guizhou (the Science and Technology Cooperation Talent Platform of Guizhou [2019] 5804)

摘要:

马铃薯块茎易受到损伤引发褐变, 褐变会对其营养、感官品质和安全性造成影响。不同马铃薯品种材料抗褐变能力存在差异, 本研究拟测定27份不同马铃薯种质材料的多酚氧化酶活性、褐变强度、褐变指数和煮后褐变4个褐变相关指标, 综合分析以实现对不同马铃薯品种(系)抗褐变能力的鉴定与筛选。结果表明, 27份材料可分为4种类型, 第1类高抗褐变, 包括09306-82和13041-52, 它们4项指标均能满足抗褐变材料的要求; 第2类抗褐变材料, 包括延薯4号、Q8、12-1、春薯3号、19-1、14018-142、大西洋、龙薯12号、威芋5号、丽薯6号、春薯5号和早大白, 它们的褐变相关指标存在个别明显不足; 第3类中度褐变材料, 包括09001-136、中薯5号、龙薯4号、东农310、青薯9号、15-1、云薯505、BF006、闽薯1号和黔芋8号, 其抗褐变能力弱; 第4类是易褐变材料, 包括春薯6号和费乌瑞它, 它们不具有抗褐变能力或抗褐变能力非常差。筛选的高抗褐变和抗褐变品种(系)可以作为鲜食抗褐变马铃薯育种材料, 为马铃薯净菜加工提供品种支撑, 易褐变材料可用于马铃薯褐变机制的基础性研究。

关键词: 马铃薯, 抗褐变, 多酚氧化酶, 褐化指数, 褐化强度, 煮后变褐

Abstract:

Potato tuber is easy to be damaged and caused browning, which will affect its nutrition, sense quality and safety. Different potato varieties have different resistances to browning. In this study, 27 different potato germplasm resources,were used to measure four indexes including polyphenol oxidase (PPO), browning degree (BD), browning index and after cooking darkening (ACD), for indentifying and selecting anti-browning potato varieties (lines). The 27 materials could be divided into four groups. High anti-browning, group including 09306-82 and 13041-52 had high resistance to browning. Anti-browning group, included Yanshu 4, Q 8, 12-1, Chunshu 3, 19-1, 14018-142, Atlantic, Longshu 12, Weiyu 5, Lishu 6, Chunshu 5, and Zaodabai, had some obvious deficiencies in the related anti-browning indicators. Medium anti-browning group, including 09001-136, Zhongshu 5, Longshu 4, Dongnong 310, Qingshu 9, 15-1, Yunshu 505, BF006, Minshu 1, and Qianyu 8, had poor resistance to browning. Easy browning group, containing Chunshu 6 and Favorita, had very weak resistance to browning. The selected varieties (lines) with very high or high resistance to browning can be used in potato breeding for browning resistance , providing variety support for potato processing industry, and the easy browning materials can be used to study the browning mechanism of potato.

Key words: potato, anti-browning, PPO, browning index, browning degree, after cooking darkening

表1

马铃薯品种(系)的主要农艺性状"

编号
No.
品种(系)
Variety (line)
株高
Plant height (cm)
花色
Flower color
薯形
Tuber shape
主茎数
Main stem number
肉色
Flesh color
芽眼深度
Eye depth
1 大西洋Atlantic 62 淡紫色Lilac 卵圆形Oval 3 白色White 浅Shallow
2 黔芋8号Qianyu 8 60 白色White 椭圆形Oblong 8 黄色Yellow 浅Shallow
3 中薯5号Zhongshu 5 61 白色White 扁圆形Oblateness 4 淡黄Flaxen 浅Shallow
4 闽薯1号Minshu 1 43 白色White 长圆形Obround 4 淡黄Flaxen 浅Shallow
5 09306-82 62 紫色Purple 长圆形Obround 5 黄色Yellow 浅Shallow
6 09001-136 65 白色White 卵圆形Oval 4 黄色Yellow 浅Shallow
7 费乌瑞它Favorita 48 蓝紫色
Bluish violet
椭圆形Oblong 4 黄色Yellow 浅Shallow
8 龙薯6号 Longshu 6 49 淡紫色Lilac 椭圆形Oblong 4 黄色Yellow 浅Shallow
9 龙薯12号 Longshu 12 51 淡紫色Lilac 扁圆形Oblateness 3 白色White 浅Shallow
10 19-1 48 白色White 椭圆形Oblong 3 黄色Yellow 中Medium
11 延薯4号Yanshu 4 49 白色White 圆形Roundness 3 黄色Yellow 中Medium
12 春薯6号Chunshu 6 54 白色White 椭圆形Oblong 5 黄色Yellow 浅Shallow
13 12-1 66 白色White 椭圆形Oblong 4 黄色Yellow 浅Shallow
14 14018-142 57 紫色Purple 椭圆形Oblong 6 黄色Yellow 中Medium
15 威芋5号Weiyu 5 61 白色White 椭圆形Oblong 5 黄色Yellow 浅Shallow
16 东农310 Dongnong 310 60 淡紫色Lilac 扁圆形Oblateness 4 白色White 浅Shallow
17 春薯3号Chunshu 3 55 白色White 圆形Roundness 4 白色White 浅Shallow
18 龙薯4号Longshu 4 47 紫色Purple 长圆形Obround 4 黄色Yellow 浅Shallow
19 13041-52 42 白色White 卵圆形Oval 5 淡黄Flaxen 浅Shallow
20 云薯505 Yunshu 505 59 白色White 扁圆形Oblateness 7 白色White 浅Shallow
21 BF006 64 白色White 长圆形Obround 7 黄色Yellow 浅Shallow
22 15-1 50 紫色Purple 椭圆形Oblong 6 黄色Yellow 浅Shallow
23 早大白Zaodabai 64 白色White 长圆形Obround 2 白色White 浅Shallow
24 春薯5号Chunshu 5 60 白色White 扁圆形Oblateness 5 白色White 浅Shallow
25 Q8 51 淡紫色Lilac 椭圆形Oblong 5 黄色Yellow 浅Shallow
26 青薯9号Qingshu 9 65 浅红色Light red 椭圆形Oblong 3 黄色Yellow 浅Shallow
27 丽薯6号Lishu 6 62 白色White 椭圆形Oblong 5 白色White 浅Shallow

图1

马铃薯品种(系)的PPO活性 图中误差线为3个重复值的标准差。"

图2

马铃薯品种(系)的褐变强度 图中误差线为3个重复值的标准差。"

表2

抗褐变马铃薯预选材料的褐变强度"

编号
No.
品种(系)
Variety (line)
褐变强度 Browning degree
30℃/20 min 4℃/24 h 变化 Difference
5 09306-82 0.106±0.0040 0.150±0.0015 0.044±0.0055
2 黔芋8号 Qianyu 8 0.123±0.0023 0.173±0.0006 0.050±0.0015
6 09001-136 0.099±0.0059 0.158±0.0015 0.059±0.0076
1 大西洋 Atlantic 0.104±0.0078 0.182±0.0012 0.078±0.0087
7 费乌瑞它 Favorita 0.113±0.0057 0.197±0.0006 0.084±0.0090
20 云薯505 Yunshu 505 0.119±0.0032 0.205±0.0025 0.086±0.0021
3 中薯5号 Zhongshu 5 0.127±0.0031 0.217±0.0023 0.090±0.0023
14 14018-142 0.102±0.0123 0.194±0.0123 0.092±0.0050
17 春薯3号 Chunshu 3 0.120±0.0062 0.269±0.0012 0.149±0.0012
19 13041-52 0.110±0.0020 0.261±0.0021 0.151±0.0015
9 龙薯12号 Longshu 12 0.142±0.0038 0.308±0.0058 0.166±0.0021

图3

马铃薯品种(系)切片的褐变表型图 各材料的编号同。"

图4

马铃薯品种(系)切片的褐变指数"

表3

抗褐变马铃薯预选材料的褐变指数"

编号
No.
品种(系)
Variety (line)
初始褐变时间
Initial browning time (h)
褐变指数 Browning index (%)
3 h 6 h 8 h 12 h 24 h 平均
Average
5 09306-82 6 5 15 15 15 15 13
11 延薯4号 Yanshu 4 8 10 10 10 25 40 19
19 13041-52 12 5 5 5 10 75 20
13 12-1 6 15 15 25 25 25 21
10 19-1 4 15 15 15 25 40 22
17 春薯3号 Chunshu 3 8 10 10 20 15 55 22
25 Q8 12 15 15 15 5 70 24
14 14018-142 5 10 15 15 35 55 26
1 大西洋 Atlantic 6 10 40 45 35 20 30
21 BF006 6 10 25 25 25 65 30
27 丽薯6号 Lishu 6 12 15 25 25 20 65 30
24 春薯5号 Chunshu 5 1 15 15 15 45 95 37
9 龙薯12号 Longshu 12 6 10 55 55 55 55 46
15 威芋5号 Weiyu 5 3 35 35 40 40 85 47
23 早大白 Zaodabai 1 35 45 45 40 70 47

图5

马铃薯品种(系)的煮后变褐 各材料的编号同表1。"

图6

马铃薯品种(系)的煮后变褐分级"

[1] 胡军, 段绍光, 徐建飞, 卞春松, 李广存, 庞万福, 金黎平. 马铃薯块茎褐变相关研究进展. 见: 屈冬玉, 陈伊里主编. 马铃薯产业与脱贫攻坚(2018). 哈尔滨: 哈尔滨地图出版社, 2018. pp 119-123.
Hu J, Duan S G, Xu J F, Bian C S, Li G C, Pang W F, Jin L P. Research progress of potato tuber browning. In: Qu D Y, Chen Y L, eds. Potato Industry and Poverty Alleviation (2018). Harbin: Harbin Map Press, 2018. pp 119-123(in Chinese).
[2] Shepherd L V T, Alexander C J, Hackett C A, McRae D, Sungurtas J A, Verrall S R, Morris J A, Hedley P E, Rockhold D, Belknap W, Davies H V. Impacts on the metabolome of down-regulating polyphenol oxidase in potato tubers. Trans Res, 2015,24:447-461.
[3] Chang Y L, Kagan L V, Antoni W J, Susan K B. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J Agric Food Chem, 1990,38:99-101.
[4] Mcevily A J, Iyengar R, Otwell W S. Inhibition of enzymatic browning in foods and beverages. Crit Rev Food Sci, 1992,32:253-273.
doi: 10.1080/10408399209527599
[5] Keilin D, Mann T. Polyphenol oxidase purification, nature and properties. Proc Royal Soc London Series B, Biol Sci, 1938,125:187-204.
[6] Capitani C D, Carvalho A C L, Botelho P B, Carrapeiro M M, Castro I A. Synergism on antioxidant activity between natural compounds optimized by response surface methodology. Eur J Lipid Sci Technol, 2009,111:1100-1110.
[7] Taranto F, Pasqualone A, Mangini G, Tripodi P, Miazzi M M, Pavan S, Montemurro C. Polyphenol oxidases in crops: biochemical, physiological and genetic aspects. Int J Mol Sci, 2017,18:377.
[8] 赵欣, 周婧, 陈湘宁, 许丽, 杨肖飞, 刘建新. OPP/CPP 膜中不同气体比例对鲜切马铃薯片保鲜的影响. 食品工业科技, 2017,38(17):207-211.
Zhao X, Zhou J, Chen X N, Xu L, Yang X F, Liu J X. Effect of different gas compositions in the OPP/CPP film on preservation of fresh-cut potato chips. Sci Technol Food Ind, 2017,38(17):207-211 (in Chinese with English abstract).
[9] Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects. J Funct Foods, 2015,18:820-897.
[10] 苏霞, 吴厚玖. 橙汁非酶褐变机制及控制措施. 食品与发酵工业, 2011,37(7):148-151.
Su X, Wu H J. Non-enzymatic Browning of orange juice and its control measures. Food Ferment Ind, 2011,37(7):148-151 (in Chinese).
[11] Mishra B B, Gautam S, Sharma A. Browning of fresh-cut eggplant: impact of cutting and storage. Postharvest Biol Technol, 2012,67:44-51.
[12] 姜莉, 林长彬, 张明兰, 张洪福, 徐怀德. 超高压对马铃薯多酚氧化酶和过氧化物酶的钝化研究. 食品工业, 2013, (1):141-143.
Jiang L, Lin C B, Zhang M L, Zhang H F, Xu H D. Study on deactivation of ultra-high voltage to the potato polyphenoloxidase and the peroxide enzyme. Food Ind, 2013, (1):141-143 (in Chinese with English abstract).
[13] Siddiq M, Sinha N K, Cash J N. Characterization of polyphenol oxidase from Stanley plums. J Food Sci, 1992,57:1177-1179.
[14] Waltz E. USDA approves next-generation GM potato. Nat Biotechnol, 2015,33:12-13.
pmid: 25574623
[15] Murata M, Nishimura M, Murai N, Haruta M, Homma S, Itoh Y. A transgenic apple callus showing reduced polyphenol oxidase activity and lower browning potential. Biosci Biotechnol Biochem, 2001,65:383-388.
pmid: 11302173
[16] Ali H M, El-Gizawy A M, El-Bassiouny R E, Saleh M A. The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chem, 2016,192:879-885.
doi: 10.1016/j.foodchem.2015.07.100 pmid: 26304424
[17] Cantos E, Tudela J A, Gil M I, Espinet J C. Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes. J Agric Food Chem, 2002,50:3015-3023.
doi: 10.1021/jf0116350 pmid: 11982435
[18] Cabezas-Serrano A B, Amodio M L, Cornacchia R, Rinaldi R, Colelli G. Suitability of five different potato cultivars ( Solanum tuberosum L.) to be processed as fresh-cut products. Postharvest Biol Technol, 2009,53:138-144.
doi: 10.1016/j.postharvbio.2009.03.009
[19] 庞学群, 张昭其. 防褐处理对切分马蹄、马铃薯低温贮藏期间褐变的影响. 食品科学, 2002,23(4):126-129.
Pang X Q, Zhang Z Q. Effects of anti-browning treatments on Browning of split-hoof and potato during low temperature storage. Food Sci, 2002,23(4):126-129 (in Chinese with English abstract).
[20] 李山云, 隋启君, 白建明, 杨琼芬, 李文鹏. 抗机械损伤褐变马铃薯品种(系)的筛选. 中国马铃薯, 2010,24(4):193-196.
Li S Y, Sui Q J, Bai J M, Yang Q F, Li W P. Screening of potato ( Solanum tuberosum L.) cultivars (lines) for browning tolerance responding to mechanical stress. Chin Potato J, 2010,24(4):193-196 (in Chinese with English abstract).
[21] 王清, 黄惠英, 马文芳, 王蒂. 反义PPO基因对马铃薯块茎褐化的影响. 作物学报, 2007,33:1822-1827.
Wang Q, Huang H Y, Ma W F, Wang D. Effect of anti-sense PPO gene on the tuber-browning of Solanum tuberosum L. Acta Agron Sin, 2007,33:1822-1827 (in Chinese with English abstract).
[22] 王唯俊. 荷兰马铃薯高世代无性系产量及品质分析. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2011.
Wang W J. Analysis of Agronomic and Quality Traits in Advanced Dutch Potato Clones. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2011 (in Chinese with English abstract).
[23] 王丽, 王万兴, 索海翠, 胡新喜, 秦玉芝, 曾璐, 李小波, 熊兴耀. 马铃薯块茎酶促褐变及与相关生理指标的关系. 园艺学报, 2019,46:1519-1530.
Wang L, Wang W X, Suo H C, Hu X X, Qin Y Z, Zeng L, Li X B, Xiong X Y. The relationship between enzymatic browning and relevant physiological index of potato tubers. Acta Hortic Sin, 2019,46:1519-1530 (in Chinese with English abstract).
[24] 王海艳, 王立春, 李凤云, 田国奎, 娄树宝, 李成君, 郝智勇. 马铃薯抗褐变种质资源的鉴定与筛选. 植物遗传资源学报, 2018,19:263-270.
Wang H Y, Wang L C, Li F Y, Tian G K, Lou S B, Li C J, Hao Z Y. Identification and selection for potato anti-browning germplasm resources. J Plant Genetic Resour, 2018,19:263-270 (in Chinese with English abstract).
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[13] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!