欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2199-2207.doi: 10.3724/SP.J.1006.2021.03049

• 耕作栽培·生理生化 • 上一篇    下一篇

适宜机械粒收玉米品种的熟期评价指标

李璐璐1(), 明博1, 初振东2, 张万旭2, 高尚1, 王浥州1, 侯梁宇1, 周先林1, 谢瑞芝1, 王克如1, 侯鹏1, 李少昆1,*()   

  1. 1中国农业科学院作物科学研究所 / 农业农村部作物生理生态重点实验室, 北京 100081
    2石河子大学农学院, 新疆石河子 832003
  • 收稿日期:2020-08-24 接受日期:2021-03-19 出版日期:2021-11-12 网络出版日期:2021-08-31
  • 通讯作者: 李少昆
  • 作者简介:E-mail: lilulu19910818@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300110);国家自然科学基金项目(31971849);国家现代农业产业技术体系建设专项(CARS-02-25);中国农业科学院农业科技创新工程项目

An growing-period indicator of maize cultivars for mechanical kernel harvest

LI Lu-Lu1(), MING Bo1, CHU Zhen-Dong2, ZHANG Wan-Xu2, GAO Shang1, WANG Yi-Zhou1, HOU Liang-Yu1, ZHOU Xian-Lin1, XIE Rui-Zhi1, WANG Ke-Ru1, HOU Peng1, LI Shao-Kun1,*()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Agricultural College, Shihezi University, Shihezi 832003, Xinjiang, China
  • Received:2020-08-24 Accepted:2021-03-19 Published:2021-11-12 Published online:2021-08-31
  • Contact: LI Shao-Kun
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300110);National Natural Science Foundation of China(31971849);China Agriculture Research System(CARS-02-25);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

摘要:

玉米收获期籽粒含水率偏高制约了机械粒收技术的应用, 选育和筛选快速脱水的品种是解决这一问题的关键, 然而我国尚缺乏评价籽粒脱水速率的指标。本研究于2014—2018年进行, 在不同产区调查了先玉335和郑单958的生育和脱水进程, 探讨玉米籽粒脱水速率的评价指标。结果表明, 播种-生理成熟积温、播种-25%含水率积温和生理成熟-25%含水率积温在品种之间均差异显著。其中播种-生理成熟积温先玉335和郑单958平均为3039ºC d (2752~3249ºC d)和3090ºC d (2750~3546ºC d), 差值51ºC d, 变异系数为4%和6%。播种-25%含水率积温在这2个品种之间差异更大, 先玉335和郑单958平均为3097ºC d (2920~3392ºC d)和3309ºC d (2980~3613ºC d), 差值达212ºC d, 变异系数为4%和5%。生理成熟-25%含水率积温先玉335和郑单958平均为66ºC d (0~287ºC d)和166ºC d (36~338ºC d), 变异系数为131%和54%。播种-25%含水率积温更能体现品种之间籽粒脱水速率, 可以作为现阶段机械粒收品种选育和筛选的熟期指标, 但是该指标在区域、年份和播期之间有一定差异, 在测量时建议统一田块和播种日期。本文提出用播种-25%含水率的积温作为评价籽粒脱水速率的熟期指标, 用于当前品种选育和筛选, 推动玉米机械粒收技术在国内的发展。

关键词: 玉米, 籽粒含水率, 脱水速率, 积温, 机械粒收

Abstract:

The high kernel moisture of maize (Zea mays L.) at harvest stage limits the field-application of mechanical kernel harvesting. The breeding and selection of fast dry-down cultivars is the key to solve this problem. However, there is still a lack of such indicators for evaluating the kernel dry-down rate in China. To explore the indicators, the crop growth and the kernel dry-down of two cultivars, Xianyu 335 and Zhengdan 958, were investigated across various maize belts in China from 2014 to 2018. Between the two cultivars, there were significant varietal differences in thermal times (TT) at the stages of planting-maturity (P-M), planting-25% moisture (P-25%), and maturity-25% moisture (M-25%), respectively. The TTP-M on average were 3039°C d (2752-3249°C d) for Xianyu 335 and 3090°C d (2750-3546°C d) for Zhengdan 958, with a difference value of 51°C d, and the corresponding coefficient of variations (CV) of TTP-M were 4% and 6%, respectively. The TTP-25% on average was 3097°C d (2920-3392°C d) for Xianyu 335 and 3309°C d (2980-3613°C d) for Zhengdan 958, with a larger difference value of 212°C d, while their CV were 4% and 5%. In several, the TTM-25% for Xianyu 335 and Zhengdan 958 were 66°C d (0-287°C d) and 166°C d (36-338°C d) with the CV of 131% and 54%. On account of its better reflection of kernel dry-down rate among cultivars, the TTP-25% could be considered as the growing period indicator for the breeding and selection of cultivars fitting to present mechanical kernel harvesting. In addition, this indicator might vary with region, year, or planting date, the same field and year were recommended to ensure a consistent environmental condition for measuring it. Conclusively, a new indicator (TTP-25%) for breeding and selection of fast dry-down hybrids was proposed, which potentially prompting maize kernel harvesting in China.

Key words: maize, kernel moisture, dry-down rate, thermal time, mechanical kernel harvest

表1

各试验点品种的播种、吐丝、生理成熟、25%含水率和取样结束日期(月/日)"

地点
Site
年份Year 播种日期
Planting date
先玉335 Xianyu 335 郑单958 Zhengdan 958 取样结束日期
Last sampling date
吐丝
Silking
生理成熟
Maturity
25%含水率
25% moisture
吐丝
Silking
生理成熟
Maturity
25%含水率
25% moisture
北京
Beijing
2014 6/1 7/27 9/24 9/26 8/1 9/27 10/12 11/2
2017 6/18 8/10 10/20 11/2 11/22
2018 5/15 7/10 9/3 9/13 7/12 9/11 9/25 10/22
2018 6/7 8/3 10/13 10/7 7/31 10/10 10/17 10/22
河南新乡
Xinxiang, Henan
2015 5/31 7/28 10/2 10/3 7/28 10/3 10/12 11/14
2015 6/11 8/5 10/9 10/10 8/4 10/9 10/19 11/14
2015 6/16 8/9 10/14 10/12 8/9 10/14 10/18 11/14
2015 6/20 8/13 10/18 10/17 8/12 10/18 10/20 11/14
2015 6/30 8/22 10/24 11/11 8/23 10/21 # 11/14
2016 5/29 7/27 9/21 9/22 7/28 9/26 10/3 10/17
2016 6/4 7/30 9/26 9/27 7/31 9/28 10/13 10/17
2016 6/11 8/3 9/30 9/28 8/3 10/2 10/20 10/25
2016 6/18 8/9 10/6 10/8 8/8 10/6 # 10/25
2016 6/25 8/15 10/21 # 8/13 10/18 # 10/25
2017 6/18 8/8 10/15 10/24 8/10 10/26 11/6 12/7
黑龙江大庆
Daqing, Heilongjiang
2016 4/28 8/2 10/21 10/20 8/2 11/6 # 12/4
2017 5/8 7/28 10/17 10/27 8/2 10/29 # 12/10
新疆昌吉
Changji, Xinjiang
2017 5/5 7/8 9/12 9/27 7/12 9/15 9/23 10/11
2018 5/1 7/13 9/10 9/11 7/17 10/8 10/13 10/15
新疆奇台农场 Qitai farm, Xinjiang
一分厂First farm 2016 4/18 7/12 9/24 9/20 7/17 9/21 # 10/8
二分厂Second farm 2016 4/13 7/17 9/29 # 10/2
2017 5/9 7/26 10/9 10/22 7/26 10/2 # 11/25
三分厂Third farm 2017 5/7 7/25 10/9 11/4 7/24 10/9 # 11/24
108团108 Regiment 2017 4/23 7/11 9/14 9/18 7/13 9/23 10/3 11/10

图1

不同下限温度计算各生育阶段积温时变异系数的变化"

图2

先玉335和郑单958播种至生理成熟、播种至25%含水率和生理成熟至25%含水率的积温 *、**和***分别表示在0.05、0.01和0.001水平差异显著; 箱形图中箱体部分代表50%样本的分布区域, 即四分位区间(IQR)。两端线为Tukey法判定的合理观测样本边界。箱体中实线为样本中位数, •为异常值点, +为样本均值。"

表2

播种至25%含水率积温的影响因素"

变量
Variable
简单相关系数
Correlation coefficient
偏相关系数
Partial correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数
Indirect path coefficient
x1 0.367* 0.264ns
x2 0.625** 0.657** 0.597 0.028
x3 0.518** 0.627** 0.484 0.035

表3

各试验点吐丝至生理成熟、生理成熟至25%含水率和播种至25%含水率积温的差异"

品种
Hybrids
地点
Sites
吐丝至生理成熟
Silking-Maturity
生理成熟至25%含水率
Maturity-25% moisture
播种至25%含水率
Planting-25% moisture
先玉335
Xianyu 335
北京Beijing 1538 92 3110
新乡Xinxiang 1507 45 3043
大庆Daqing 1336 20 3188
昌吉Changji 1508 152 3267
奇台108团108 regiment, Qitai 1555 63 3285
奇台一分厂First farm, Qitai 1634 0 3124
奇台二分厂Second farm, Qitai 1283 90 3032
奇台三分厂Third farm, Qitai 1221 168 2920
极差Range 413 168 365
品种
Hybrids
地点
Sites
吐丝至生理成熟
Silking-Maturity
生理成熟至25%含水率
Maturity-25% moisture
播种至25%含水率
Planting-25% moisture
郑单958
Zhengdan 958
北京Beijing 1561 191 3273
新乡Xinxiang 1533 173 3264
大庆Daqing 1311 # #
昌吉Changji 1642 120 3479
奇台108团108 regiment, Qitai 1654 102 3475
奇台一分厂First farm, Qitai 1449 # #
奇台二分厂Second farm, Qitai 1388 # #
奇台三分厂Third farm, Qitai 1244 # #
极差Range 410

表4

不同年份吐丝至生理成熟、生理成熟至25%含水率和播种至25%含水率积温的差异"

品种
Hybrids
地点
Sites
播期
Planting dates
吐丝至生理成熟
Silking-maturity
(°C d)
生理成熟至25%含水率
Maturity-25% moisture
(°C d)
播种至25%含水率
Planting-25% moisture
(°C d)
先玉335
Xianyu 335
北京
Beijing
2014/6/1 1455 38 2976
2018/6/7 1625 0 3127
新疆昌吉
Changji, Xinjiang
2017/5/5 1570 287 3392
2018/5/1 1445 18 3142
河南新乡
Xinxiang, Henan
2015/6/11 1535 17 3049
2016/6/11 1488 0 2946
郑单958
Zhengdan 958
北京
Beijing
2014/6/1 1374 238 3234
2018/6/7 1688 87 3255
新疆昌吉
Changji, Xinjiang
2017/5/5 1524 173 3346
2018/5/1 1761 66 3613
河南新乡
Xinxiang, Henan
2015/6/11 1561 181 3213
2016/6/11 1527 338 3357

图3

不同播期播种至25%含水率积温"

[1] 李少昆. 美国玉米生产技术特点与启示. 玉米科学, 2013, 21(3):1-5.
Li S K. Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013, 21(3):1-5 (in Chinese with English abstract).
[2] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆. 黄淮海夏玉米籽粒机械收获研究初报. 作物杂志, 2014, (2): 76‒79.
Xie R Z, Lei X P, Wang K R, Guo Y Q, Chai Z W, Hou P, Li S K. Research on corn mechanically harvesting grain quality in Huang-Huai-Hai Plain. Crops, 2014, (2):76-79 (in Chinese with English abstract).
[3] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50: 2027-2035.
Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017, 50: 2027-2035 (in Chinese with English abstract).
[4] 王克如, 李少昆. 玉米机械粒收破碎率研究进展. 中国农业科学, 2017, 50: 2018-2026.
Wang K R, Li S K. Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017, 50: 2018-2026 (in Chinese with English abstract).
[5] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50: 2044-2051.
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K. Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017, 50: 2044-2051 (in Chinese with English abstract).
[6] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Ind Crops Prod, 2007, 25: 239-247.
doi: 10.1016/j.indcrop.2006.12.003
[7] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009, 35: 1708-1714.
Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin, 2009, 35: 1708-1714 (in Chinese with English abstract).
[8] 刘月娥, 谢瑞芝, 张厚宝, 李少昆, 高世菊. 不同生态区玉米适时晚收增产效果. 中国农业科学, 2010, 43: 2820-2828.
Liu Y E, Xie R Z, Zhang H B, Li S K, Gao S J. Study on increasing rate of maize yield after putting off harvest time in different ecoregions. Sci Agric Sin, 2010, 43: 2820-2828 (in Chinese with English abstract).
[9] 徐彩龙. 华北地区冬小麦-夏玉米双晚模式的优化及其水肥高效调控. 中国农业大学博士学位论文, 北京, 2017.
Xu C L. Optimal Double-delay in Winter Wheat-summer Maize Double Cropping System in North China Plain and its Efficient Regulation of Water and Fertilizer. PhD Dissertation of China Agricultural University, Beijing, China, 2017 (in Chinese with English abstract).
[10] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44: 137-143.
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018, 44: 137-143 (in Chinese with English abstract).
[11] Jennings M V. Genotypic Variability in Grain Quality of Corn Zea mays L. PhD Dissertation of Iowa State University, Iowa, USA, 1974.
[12] Cloninger F D, Horrocks R D, Zuber M S. Effects of harvest date, plant density, and hybrid on corn grain quality. Agron J, 1975, 67: 693-695.
doi: 10.2134/agronj1975.00021962006700050028x
[13] Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994, 74: 543-544.
doi: 10.4141/cjps94-097
[14] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50: 2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017, 50: 2036-2043 (in Chinese with English abstract).
[15] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆. 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018, 44: 1747-1754.
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018, 44: 1747-1754 (in Chinese with English abstract).
[16] Cross H Z, Zuber M S. Prediction of flowering dates in maize based on different methods of estimating thermal units. Agron J, 1972, 64: 351-355.
doi: 10.2134/agronj1972.00021962006400030029x
[17] Russelle M P, Wilhelm W W, Olson R A, Power J F. Growth analysis based on degree days. Crop Sci, 1984, 24: 28-32.
doi: 10.2135/cropsci1984.0011183X002400010007x
[18] Mcmaster G S, Wilhelm W W. Growing degree-days: one equation, two interpretations. Agric For Meteorol, 1997, 87: 291-300.
doi: 10.1016/S0168-1923(97)00027-0
[19] Stewart D W, Dwyer L M, Carrigan L L. Phenological temperature response of maize. Agron J, 1998, 90: 73-79.
doi: 10.2134/agronj1998.00021962009000010014x
[20] Tsimba R, Edmeades G O, Millner J P, Kemp P D. The effect of planting date on maize: phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res, 2013, 150: 145-155.
doi: 10.1016/j.fcr.2013.05.021
[21] Hallauer A R, Russell W A. Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn. Agron J, 1961, 53: 225-229.
doi: 10.2134/agronj1961.00021962005300040006x
[22] Schmidt J L, Hallauer A R. Estimating harvest date of corn in the field. Crop Sci, 1966, 6: 227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[23] 李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍. 玉米子粒机械收获破碎率研究. 作物杂志, 2017, (2):76-80.
Li S K, Wang K R, Xie R Z, Li L L, Ming B, Hou P, Chu Z D, Zhang W X, Liu C W. Grain breakage rate of maize by mechanical harvesting in china. Crops, 2017, (2):76-80 (in Chinese with English abstract).
[24] Daynard T B. Relationships among black layer formation, grain moisture percentage, and heat unit accumulation in corn. Agron J, 1972, 64: 716-719.
doi: 10.2134/agronj1972.00021962006400060003x
[25] Baker D G. Effect of observation time on mean temperature estimation. J Appl Meteorol, 1975, 14: 471-476.
doi: 10.1175/1520-0450(1975)014<0471:EOOTOM>2.0.CO;2
[26] Muchow R C. Effect of high temperature on grain-growth in field-grown maize. Field Crops Res, 1990, 23: 145-158.
doi: 10.1016/0378-4290(90)90109-O
[27] Bonhomme R, Derieux M, Edmeades G O. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Sci, 1994, 34: 156-164.
doi: 10.2135/cropsci1994.0011183X003400010028x
[28] Warrington I J, Kanemasu E T. Corn growth response to temperature and photoperiod I. seedling emergence, tassel initiation, and anthesis. Agron J, 1983, 75: 749-754.
doi: 10.2134/agronj1983.00021962007500050008x
[29] Hou P, Liu Y E, Xie R Z, Ming B, Ma D L, Li S K. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Res, 2014, 158: 55-64.
doi: 10.1016/j.fcr.2013.12.021
[30] Borrás L, Westgate M E, Otegui M E. Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot, 2003, 91: 857-867.
doi: 10.1093/aob/mcg090
[31] Gambín B L, Borrás L, Otegui M E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[32] Major D J, Brown D M, Bootsma A, Dupuis G, Fairey N A, Grant E A, Green D G, Hamilton R I, Langille J, Sonmor L G, Smeltzer G C, White R P. An evaluation of the corn heat unit system for the short-season growing regions across Canada. Can J Plant Sci, 1983, 63: 121-130.
doi: 10.4141/cjps83-012
[33] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆. 郑单958与先玉335籽粒脱水特征研究. 玉米科学, 2016, 24(2):57-61.
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016, 24(2):57-61 (in Chinese with English abstract).
[34] 秦营营, 董树亭. 夏玉米子粒乳线比例与含水量、粒重及营养物质积累的关系. 玉米科学, 2014, 22(2):81-86.
Qin Y Y, Dong S T. Relationship among kernel milk line formation, water content, grain weight and nutrients accumulation of summer maize. J Maize Sci, 2014, 22(2):81-86 (in Chinese with English abstract).
[35] Rench W E, Shaw R H. Black layer development in corn. Agron J, 1971, 63: 303-305.
doi: 10.2134/agronj1971.00021962006300020031x
[36] Afuakwa J J, Crookston R K. Using the kernel milk line to visually monitor grain maturity in maize. Crop Sci, 1984, 24: 687-691.
doi: 10.2135/cropsci1984.0011183X002400040015x
[37] Ma B L, Dwyer L M. Maize kernel moisture, carbon and nitrogen concentrations from silking to physiological maturity. Can J Plant Sci, 2001, 81: 225-232.
doi: 10.4141/P00-073
[38] Tollenaar M, Daynard T B. Effect of defoliation on kernel development in maize. Can J Plant Sci, 1978, 58: 207-212.
doi: 10.4141/cjps78-030
[39] Carter M W, Poneleit C G. Black layer maturity and filling period variation among inbred lines of corn (Zea mays L.). Crop Sci, 1973, 13: 436-439.
doi: 10.2135/cropsci1973.0011183X001300040014x
[40] Tremblay G J, Filion P, Tremblay M, Berard M, Durand J, Goulet J, Montpetit J M. Evolution of kernels moisture content and physiological maturity determination of corn (Zea mays L.). Can J Plant Sci, 2008, 88: 679-685.
doi: 10.4141/CJPS07058
[41] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, (2):88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai region. Crops, 2017, (2):88-92 (in Chinese with English abstract).
[42] Borrás L, Westgate M E. Predicting maize kernel sink capacity early in development. Field Crops Res, 2006, 95: 223-233.
doi: 10.1016/j.fcr.2005.03.001
[43] Sala R G, Andrade F H, Westgate M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling. Crop Sci, 2007, 47: 711-716.
doi: 10.2135/cropsci2006.06.0381
[44] 薛军, 王群, 李璐璐, 张万旭, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44: 1782-1792.
Xue J, Wang Q, Li L L, Zhang W X, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Changes of maize lodging after physiological maturity and its influencing factors. Acta Agron Sin, 2018, 44: 1782-1792 (in Chinese with English abstract).
[45] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44: 1755-1763.
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai rivers summer maize. Acta Agron Sin, 2018, 44: 1755-1763 (in Chinese with English abstract).
[46] Cutforth H W, Shaykewich C F. Relationship of development rates of corn from planting to silking to air and soil temperature and to accumulated thermal units in a prairie environment. Can J Plant Sci, 1989, 69: 121-132.
doi: 10.4141/cjps89-014
[47] Mcmaster G S, Smika D E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol, 1988, 43: 1-18.
doi: 10.1016/0168-1923(88)90002-0
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!