欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1511-1521.doi: 10.3724/SP.J.1006.2021.01082

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估

王音1(), 冯志威3, 葛川3, 赵佳佳2, 乔玲2, 武棒棒2, 闫素仙2, 郑军2,3,*(), 郑兴卫2,3,*()   

  1. 1山西师范大学临汾学院自然科学系, 山西临汾041000
    2山西农业大学小麦研究所, 山西临汾041000
    3山西农业大学农学院/作物遗传与分子改良山西省重点实验室, 山西太原 030000
  • 收稿日期:2020-10-22 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-03-02
  • 通讯作者: 郑军,郑兴卫
  • 作者简介:王音, E-mail: wangyinstar@163.com
  • 基金资助:
    中国博士后科学基金项目(2020M670701);山西省重点研发计划项目(201903D221074);山西省重点研发计划项目(201903D221075);山西省重点实验室项目(201705D111008-22)

Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding

WANG Yin1(), FENG Zhi-Wei3, GE Chuan3, ZHAO Jia-Jia2, QIAO Ling2, WU Bang-Bang2, YAN Su-Xian2, ZHENG Jun2,3,*(), ZHENG Xing-Wei2,3,*()   

  1. 1Department of Natural Sciences, Shanxi Normal University, Linfen 041000, Shanxi, China
    2Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, Shanxi, China
    3College of Agriculture, Shanxi Agricultural University/Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030000, Shanxi, China
  • Received:2020-10-22 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-03-02
  • Contact: ZHENG Jun,ZHENG Xing-Wei
  • Supported by:
    China Postdoctoral Science Foundation(2020M670701);Key Research and Development Program in Shanxi Province(201903D221074);Key Research and Development Program in Shanxi Province(201903D221075);Shanxi Key Laboratory Program(201705D111008-22)

摘要:

小麦近缘属种中含有丰富的抗病资源, 前期从普通小麦与六倍体中间偃麦草的杂交、回交后代中, 鉴定获得稳定的小麦易位系新种质ZH811。为发掘和利用该易位系的抗性基因, 对ZH811进行苗期分小种的条锈病鉴定、田间农艺性状考察、分子细胞学特性和主要品质性状分析; 利用随机扩增多态性DNA (Random Amplified Polymorphic DNA, RAPD)开发易位片段的特异标记。结果表明, ZH811苗期对条锈菌条中29、31、32、33、34以及水源4、5和7号的混合菌种具有较强的抗性, 其抗性源于5D染色体短臂含有来源于Ee基因组的小片段易位; SCAR标记(Sequence Characterized Amplified Region, SCAR)和黑芒可作为易位片段追踪的分子和形态标记; ZH811的主要农艺性状接近当前黄淮北片麦区的主推品种, HMW-GS组合类型是“1, 17+18, 5+10”, 3个位点均为优质亚基, 各项品质指标达到中强筋的标准; 易位片段具有增加穗粒数的效应, 不含降低品质的连锁累赘。ZH811可为培育高产、抗病和优质小麦新品种提供重要的中间材料。

关键词: 条锈, 易位系, 原位杂交, 分子标记

Abstract:

There are abundant disease resistance resources in relative genus of wheat. The translocation line ZH811 derived from progeny of wheat and Th. intermedium hybrids, was selected for evaluation of stripe rust resistance. A series of stripe rust races such as CYR29, CYR31, CYR32, CYR33, CYR34, Suwon-4, Suwon-5, and Suwon-7 were used to record stripe responses at seedling stage. Agronomical traits, quality traits, and molecular cytogenetic analysis were also performed. Moreover, specific molecular markers located on alien segment was developed by RAPD method. The results indicated that ZH811 was highly resistant to all tested races at seedling stage. And it further proved that the resistance was conferred by a small-fragment-translocation from the Ee genome on 5DS chromosome. The SCAR markers and black awn traits could be used to trace the translocation fragment. ZH811 possessed similar agronomic traits with the commercial cultivars in the Yellow-Huaihe-Haihe Rivers region of wheat. The translocation fragment may be associated with the increase of grain number. The components of the Glu-1 were good-quality subunits, including 1, 17+18, and 5+10, and each quality index met the standard of moderate gluten. The alien chromosomal fragment had no obvious linkage drag to grain quality performance. Based on these findings, ZH811 could be used as a potential material for wheat breeding in high yield, disease resistance, and high quality.

Key words: stripe rust, translocation line, in situ hybridization, molecular marker

表1

试验所需植物材料及信息"

材料名称
Plant materials
材料信息
Information of plant materials
ZH811, ZH577 F5 (中国春/中间偃麦草)//晋麦33///临4133组合F3中选育
Deriving from F3 [F5(CS/Z1141)//Jinmai 33///Lin 4133]
ZH811×ZH577正反交F2群体
ZH811×ZH577 reciprocal F2 populations
ZH811和ZH577进行杂交获得的正反交F2群体
F2 populations generated from reciprocal crosses between ZH811 and ZH577
ZH811×ZH577 BC1群体
ZH811×ZH577 BC1 populations
ZH811×ZH577回交一代群体
The first backcross generations of ZH811 and ZH577
ZH811×ZH577 DH群体
ZH811×ZH577 DH populations
以ZH811和ZH577为亲本构建的双单倍体群体
Double haploid population of a cross between ZH811 and ZH577
中国春、晋麦33、临4133
Chines Spring, Jinmai 33, Lin 4133
易位系的亲本
Parent materials of the translocation line
铭贤169
Mingxian 169
感病对照
Susceptible control variety
良星99
Liangxing 99
品质性状对照
Quality traits control
师栾02-1、烟农19
Shiluan 02-1, Yannong 19
高分子量麦谷蛋白亚基对照
High-Molecular-Weight Glutenin Subunits (HWM-GS) control varieties
Z1141 六倍体中间偃麦草
Th. intermedium (2n = 42, StStEeEeEbEb)
PI98526 二倍体长穗偃麦草
Th. elongatum (2n = 14, EeEe)
PI531712 百萨偃麦草
Th. bessarabicum (2n = 14, EbEb)
PI313960 拟鹅观草
Pseudoroegneria strigose (2n = 14, StSt)

图1

苗期抗病性鉴定"

表2

ZH811和ZH577后代群体中抗、感单株数和分离比适合性检验"

群体世代
Generation
不同抗病类型的株系数量
No. of plants with different infection type
理论比
Expected ratio
χ2 P
抗病Resistant 感病Susceptible
正交F2 Direct cross F2 133 47 3:1 0.12 0.73
反交F2 Reciprocal cross F2 112 38 3:1 0.01 0.93
BC1 54 46 1:1 0.64 0.42

图2

ZH811 (A, B)和亲本晋麦33 (C, D)、临4133 (E, F)的GISH/FISH分析 A, C, E: 利用中国春基因组做封阻, 中间偃麦草基因组为探针的GISH分析; B, D, F: 利用探针pAs1 (绿色信号)和pSc119.2 (红色信号)进行FISH分析。白色箭头指示小麦-中间偃麦草易位片段(A)和5D染色体(B~F)。标尺为10 μm。"

图3

不同材料的标记鉴定结果 A: ZH811和ZH577的RAPD扩增(对应泳道从左到右分别是DL2000 marker、ZH811和ZH577退火温度46℃扩增、ZH811和ZH577退火温度50℃扩增、ZH811和ZH577退火温度54℃扩增); 白色箭头指示ZH811和ZH577扩增出的差异条带; B: SCAR标记不同材料中的扩增结果(对应泳道从左到右分别是DL2000 marker、ZH811、ZH577、中国春CS、临4133、晋麦33、中间偃麦草ZH1141、二倍体长穗偃麦草PI98526、百萨偃麦草PI531712、拟鹅观草PI313960、ddH2O);"

图4

ZH811×ZH577 DH部分株系的抗病表型及对应的SCAR标记和芒色鉴定"

图5

ZH811和ZH577植株形态"

图6

易位与非易位系农艺性状表现"

图7

高分子量麦谷蛋白亚基的SDS-PAGE分析 从左到右依次为师栾02-1 (SL02-1)、ZH811、烟农19 (YN19)、晋麦33号(JM33)、中国春(CS)。图中数字表示各条带代表的高分子量麦谷蛋白亚基类型。"

表3

不同材料的品质性状"

品种
Cultivar
蛋白质含量
Protein content (%)
沉降值
Zeleny
(mL)
湿面筋含量
Wet gluten
content (%)
形成时间
Formation time (min)
稳定时间
Dough stability time stability time (min)
最大拉伸阻力
Max resistance to drag (E.U.)
拉伸面积
Stretch area (cm2)
ZH811
ZH577
14.57±1.53 a 30.25±2.75 ab 32.87±2.32 a 5.82±0.41 a 7.88±0.23 a 368.00±12.37 a 88.00±3.12 a
14.96±1.87 a 32.84±2.11 a 32.26±2.88 a 5.75±0.33 a 8.15±0.17 a 342.00±13.59 a 89.00±4.69 a
良星99
Liangxing 99
13.32±0.84 b 26.81±1.26 b 30.61±1.82 b 2.10±0.44 b 2.70±0.23 b 193.00±15.27 b 42.00±3.72 b
[1] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015,48:3439-3453.
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015,48:3439-3453 (in Chinese with English abstract).
[2] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013,46:4254-4262.
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013,46:4254-4262 (in Chinese with English abstract).
[3] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002.
Li Z Q, Zeng S M. Wheat Rusts in China. Beijing: China Agriculture Press, 2002 (in Chinese).
[4] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018,44(5):6-17.
Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Prot, 2018,44(5):6-17 (in Chinese with English abstract).
[5] McIntosh R, Mu J M, Han D J, Kang Z S. Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J, 2018,6:321-329.
doi: 10.1016/j.cj.2018.02.001
[6] Cruz C D, Peterson G L, Bockus W W, Kankanala P, Dubcovsky J, Jordan K W, Akhunov E, Chumley F, Baldelomar F D, Valent B. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci, 2016,56:990-1000
pmid: 27814405
[7] 董玉琛. 小麦的基因源. 麦类作物学报, 2000,20(3):78-81.
Dong Y C. Gene pool of common wheat. J Triticeae Crops, 2000,20(3):78-81 (in Chinese with English abstract).
[8] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交. 北京: 科学出版社, 1985.
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M. Wheat Wild Hybridization. Beijing: Science Press, 1985 (in Chinese).
[9] 李万隆, 李振声. 小麦品种小偃6号染色体结构变异的细胞学研究. 遗传学报, 1990,17:430-437.
Li W L, Li Z S. A cytological study of chromosomal structure changes in a common wheat variety, Xiaoyan No. 6. Acta Genet Sin, 1990,17:430-437 (in Chinese with English abstract).
[10] Guo J, Zhang X, Hou Y, Cai J, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015,128:2301-2316.
doi: 10.1007/s00122-015-2586-x
[11] 李立会, 张锦鹏, 杨欣明, 刘伟华, 李秀全, 韩海明, 周升辉. 小麦与冰草属间远缘杂交及新种质创制研究进展. 见: 第十届全国小麦基因组学及分子育种大会摘要集, 2019. p 54.
Li L H, Zhang J P, Yang X M, Liu W H, Li X Q, Han H M, Zhou S H. Research progress of wheat-Agropyron cristatum wild hybridization and creation of new germplasms. In: The 10th National Conference on Wheat Genomics and Molecular Breeding, 2019. p 54. (in Chinese)
[12] Lupton F G H, Macer R C F. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Transact British Mycol Soc, 1962,45:21-45.
[13] Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homeologous recombination. Nature, 1968,217:378-384.
doi: 10.1038/217378a0
[14] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivar Compare, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology, 1995,143:19-26.
[15] Zeller F J. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears E R, Sears L M S, eds. Proceedings of the 4th International Wheat Genetics Symposium. Missouri Agricultural Experiment Station, University of Missouri, Columbia, 1973. pp 209-221.
[16] Bariana H S, Parry N, Barclay I R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2006,112:1143-1148.
pmid: 16435125
[17] Bariana H S, McIntosh R A. Cytogenetic studies in wheat: XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 1993, 36: 476-482.
pmid: 18470001
[18] Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci, 2000,40:1148-1155.
doi: 10.2135/cropsci2000.4041148x
[19] Marais G F, McCallum B, Snyman J E, Pretorius Z A, Marais A S. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed, 2005,124:538-541.
doi: 10.1111/pbr.2005.124.issue-6
[20] Marais G F, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica, 2006,149:373-380.
doi: 10.1007/s10681-006-9092-9
[21] Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowden R L, Gill B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007,114:1379-1389.
pmid: 17356867
[22] Marais F, Marais A, Mccallum B, Pretorius Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci, 2009,49:871-879.
doi: 10.2135/cropsci2008.06.0317
[23] 刘成. 小麦远缘杂交种质资源评价. 北京: 中国农业科学技术出版社, 2019. pp 185-279.
Liu C. Evaluation of Wheat Germplasm Derived from Distant Hybridization. Beijing: China Agricultural Science and Technology Press, 2019. pp 185-279(in Chinese).
[24] Friebe B, Jiang J, Knott D R, Gill B S. Compensation indices of radiation-induced wheat- Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 1994,34:400-404.
doi: 10.2135/cropsci1994.0011183X003400020018x
[25] Zhan H X, Zhang X J, Li G R, Pan Z H, Hu J, Li X, Qiao L Y, Jia J Q, Guo H J, Chang Z J, Yang Z J. Molecular characterization of a new wheat- Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int J Mol Sci, 2015,16:2162-2173.
doi: 10.3390/ijms16012162
[26] Lang T, La M S, Li B, Yu Z H, Chen Q H, Li J B, Yang E N, Li G R, Yang Z J. Precise identification of wheat- Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018,61:177-185.
doi: 10.1139/gen-2017-0229 pmid: 29470932
[27] Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat- Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004,109:1070-1076.
doi: 10.1007/s00122-004-1720-y
[28] Tang X Q, Shi D, Xu J, Li Y L, Li W J, Ren Z L, Fu T H. Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica, 2014,197:201-210.
doi: 10.1007/s10681-013-1059-z
[29] Fedak G, Chen Q, Conner R L, Laroche A, Petroski R, Armstrong K W. Characterization of wheat- Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome, 2000,43:712-719.
pmid: 10984185
[30] Yang Z J, Li G R, Chang Z J, Zhou J P, Ren Z L. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006,149:11-17.
doi: 10.1007/s10681-005-9010-6
[31] Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat- Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010,147:304-312.
doi: 10.1111/more.2010.147.issue-6
[32] Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat- Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res, 2009,126:390-395.
doi: 10.1159/000266169
[33] 杨敏娜, 徐智斌, 王美南, 宋建荣, 井金学, 李振岐. 小麦品种中梁22抗条锈病基因的遗传分析和分子作图. 作物学报, 2008,34:1280-1284.
Yang M N, Xu Z B, Wang M N, Song J R, Jing J X, Li Z Q. Genetic analysis and molecular mapping of stripe rust resistance gene in wheat cultivar Zhongliang 22. Acta Agron Sin, 2008,34:1280-1284 (in Chinese with English abstract).
[34] Liu J, Chang Z J, Zhang X J, Yang Z J, Li X, Jia J Q, Zhan H X, Guo H J, Wang J M. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet, 2013,126:265-274.
doi: 10.1007/s00122-012-1979-3
[35] Hou L, Jia J, Zhang X, Li X, Yang Z, Ma J, Guo H, Zhan H, Qiao L, Chang Z. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis, 2016,100:1717-1724.
doi: 10.1094/PDIS-05-15-0555-RE
[36] 詹海仙, 畅志坚, 李光蓉, 贾举庆, 郭慧娟, 张晓军, 李欣, 乔麟轶, 杨足君. 小麦新抗源CH5383抗条锈病基因的遗传分析及分子定位. 生物技术通报, 2014,6:96-100.
Zhan H X, Chang Z J, Li G R, Jia J Q, Guo H J, Zhang X J, Li X, Qiao L Y, Yang Z J. Genetic analysis and molecular mapping of stripe rust resistance gene in wheat line CH5383. Biotech Bull, 2014,6:96-100 (in Chinese with English abstract).
[37] Huang Q, Li X, Chen WQ, Xiang Z P, Zhong S F, Chang Z J, Zhang M, Zhang H Y, Tan F Q, Ren Z L, Luo P G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet, 2014,127:843-853.
doi: 10.1007/s00122-014-2261-7
[38] 侯丽媛, 乔麟轶, 张晓军, 李欣, 詹海仙, 畅志坚. 抗条锈病基因YrCH5026的遗传分析及分子定位. 华北农学报, 2015,30(5):7-15.
Hou L Y, Qiao L Y, Zhang X J, Li X, Zhan H X, Chang Z J. Genetic analysis and molecular mapping of a stripe rust resistance gene YrCH5026. Acta Agric Boreali-Sin, 2015,30(5):7-15 (in Chinese with English abstract).
[39] 吴建辉. 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Wu J H. QTL Mapping for Adult-plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-seq and SNP Array. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[40] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin No. 1788, 1992,44.
[41] 崔承齐, 王林生, 陈佩度. 普通小麦-大赖草易位系T7BS·7Lr#1S和T2AS·2AL-7Lr#1S的分子细胞遗传学鉴定. 作物学报, 2013,39:191-197.
Cui C Q, Wang L S, Chen P D. Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation lines T7BS·7Lr#1S and T2AS·2AL-7Lr#1S. Acta Agron Sin, 2013,39:191-197 (in Chinese with English abstract).
[42] Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996,39:1062-1071.
pmid: 18469955
[43] 赵佳佳, 乔玲, 郑兴卫, 李晓华, 曹勇, 马小飞, 杨斌, 姬虎太, 乔麟轶, 郑军, 张建诚. 山西小麦育成品种品质性状及HMW-GS组成演变分析. 植物遗传资源学报, 2018,19:1126-1137.
Zhao J J, Qiao L, Zheng X W, Li X H, Cao Y, Ma X F, Yang B, Ji H T, Qiao L Y, Zheng J, Zhang J C. Variation of quality-related traits and HMW-GS of wheat varieties in Shanxi province. J Plant Genet Resour, 2018,19:1126-1137 (in Chinese with English abstract).
[44] Hu L J, Li G R, Zeng Z X, Chang Z J, Liu C, Yang Z J. Molecular characterization of a wheat- Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. J Appl Genet, 2011,52:279-285.
doi: 10.1007/s13353-011-0038-0
[45] 郝薇薇, 汤才国, 李葆春, 郝晨阳, 张学勇. 小麦-十倍体长穗偃麦草广谱抗锈易位系的鉴定及分析. 中国农业科学, 2012,45:3240-3248.
Hao W W, Tang C G, Li B C, Hao C Y, Zhang X Y. Analysis of wheat- Thinopyrum ponticum translocation lines with broad spectrum resistance to stripe rusts. Sci Agri Sin, 2012,45:3240-3248 (in Chinese with English abstract).
[46] 李振声, 穆素梅, 蒋立训, 周汉平, 吴景科, 余玲. 蓝粒单体小麦研究(一). 遗传学报, 1982,9:431-439.
Li Z S, Mu S M, Jiang L X, Zhou H P, Wu J K, Yu L. A study on blue-grained monosomic wheat (I). Acta Genet Sin, 1982,9:431-439 (in Chinese with English abstract).
[47] Miller T E, Reader S M. A guide to the homoeology of chromosomes within the Triticeae. Theor Appl Genet, 1987,74:214-217.
doi: 10.1007/BF00289971 pmid: 24241567
[48] 李淑梅, 徐川梅, 周波, 陈佩度. 普通小麦-簇毛麦2V染色体端体异附加系的选育与鉴定. 南京农业大学学报, 2009,32(1):1-5.
Li S M, Xu C M, Zhou B, Chen P D. Development and identification of Triticum aestivum-Haynaldia villosa ditelosomic addition lines involving chromosome 2V of H. villosa. J Nanjing Agric Univ, 2009,32(1):1-5 (in Chinese with English abstract).
[49] Xin Z Y, Xu H J, Chen X. Research on introducing yellow dwarf resistance to common wheat using biotechnology. Sci China (Series B), 1991,21:36-42.
[50] McIntosh R A, Baker E P. Chromosome location and linkage studies involving the Pm3 locus for powdery mildew resistance in wheat. J Lumin, 1968,93:232-238.
[51] Hsam N B O, Kowalczyk K, Zeller F J, Hsam S L K. Characterization of powdery mildew resistance and linkage studies involving the Pm3 locus on chromosome 1A of common wheat (Triticum aestivum L.). J Appl Genet, 2015,56:37-44.
doi: 10.1007/s13353-014-0236-7
[52] Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002,105:921-936.
doi: 10.1007/s00122-002-0994-1
[53] Jing H C, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova O P, Koebner R, Hammond-Kosack K. Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot, 2007,58:3749-3764.
doi: 10.1093/jxb/erm225
[54] Chai J F, Liu X, Jia J Z. Homoeologous cloning of omega-secalin gene family in a wheat 1BL/1RS translocation. Cell Res, 2005,15:658-664.
doi: 10.1038/sj.cr.7290335
[55] 杨芳萍, 刘金栋, 郭莹, 贾奥琳, 闻伟鄂, 巢凯翔, 伍玲, 岳维云, 董亚超, 夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位. 作物学报, 2019,45:1832-1840.
Yang F P, Liu J D, Guo Y, Jiao A L, Wen W E, Chao K X, Wu L, Yue W Y, Dong Y C, Xia X C. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast. Acta Agron Sin, 2019,45:1832-1840 (in Chinese with English abstract).
[56] 张怀志, 谢菁忠, 陈永兴, 刘旭, 王勇, 闫素红, 杨兆生, 赵虹, 王西成, 贾联合, 曹廷杰, 刘志勇. 利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103. 作物学报, 2017,43:1643-1649.
Zhang H Z, Xie J Z, Chen Y X, Liu X, Wang Y, Yan S H, Yang Z S, Zhao H, Wang X C, Jia L H, Cao L J, Liu Z Y. Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-seq. Acta Agron Sin, 2017,43:1643-1649 (in Chinese with English abstract).
[1] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[2] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[5] 段亚梅, 罗贤磊, 陈士强, 高勇, 陈建民, 戴毅. 硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制[J]. 作物学报, 2021, 47(7): 1402-1414.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[11] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[12] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[13] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[14] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[15] 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!