欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (1): 40-47.doi: 10.3724/SP.J.1006.2022.01103

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦谷氨酰胺合成酶基因可变剪接分析

韦一昊1(), 于美琴2, 张晓娇1, 王露露1, 张志勇1, 马新明1, 李会强2, 王小纯1,2,*()   

  1. 1河南省粮食作物协同创新中心 / 河南农业大学, 河南郑州 450002
    2河南农业大学生命科学学院, 河南郑州 450002
  • 收稿日期:2020-12-29 接受日期:2021-04-14 出版日期:2022-01-12 网络出版日期:2021-06-28
  • 通讯作者: 王小纯
  • 作者简介:E-mail: yc_yihao@163.com
  • 基金资助:
    国家自然科学基金项目(32071956);河南省现代农业产业技术体系建设专项资助(S2010-01-G04)

Alternative splicing analysis of wheat glutamine synthase genes

WEI Yi-Hao1(), YU Mei-Qin2, ZHANG Xiao-Jiao1, WANG Lu-Lu1, ZHANG Zhi-Yong1, MA Xin-Ming1, LI Hui-Qing2, WANG Xiao-Chun1,2,*()   

  1. 1Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Department of Biochemistry, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2020-12-29 Accepted:2021-04-14 Published:2022-01-12 Published online:2021-06-28
  • Contact: WANG Xiao-Chun
  • Supported by:
    National Natural Science Foundation of China(32071956);Agriculture Research System of Henan Province(S2010-01-G04)

摘要:

谷氨酰胺合成酶(glutamine synthetase, GS)是植物氮素同化的关键酶, 小麦(Triticum aestivum L.) GS由12个核基因编码, 即TaGS1;1-6A/6B/6DTaGS1;2-4A/4B/4DTaGS1;3-4A/4B/4DTaGS2-2A/2B/2D。利用单分子测序技术获得了TaGS基因的全长转录本, 发现TaGS1;1-6A有1种可变剪接转录本、TaGS1;1-6B有2种可变剪接形式; 与正常转录本编码的TaGS相比, TaGS1;1-6A-1的Gln_synt_N结构域部分缺失, TaGS1;1-6B-3缺少Gln_synth_ gly_rich_site结构域; TaGS1;1-6B-4是新鉴定的转录本, 编码缺少Gln_synth_gly_rich_site和Gln_synth_cat_dom结构域的GS蛋白。进一步研究了氮肥对不同氮效率小麦品种可变剪接转录本表达的影响, 发现氮高效品种YM49叶片TaGS1;1-6A-1表达水平显著高于氮低效品种XN509, 且随着氮肥增加而升高; YM49根系TaGS1;1-6A-1表达随供氮量增加而升高, XN509却呈现相反趋势。TaGS1;1-6B-3在YM49和XN509中有相似的表达趋势, 高浓度NO3-促进TaGS1;1-6B-3在叶片中表达, 却抑制其在根中的表达; 高浓度NH4+抑制TaGS1;1-6B-3在叶片中表达, 但在根中表达影响较小。TaGS1;1-6B-4主要在低氮条件下表达, NH4+浓度不影响其在YM49根中的表达。了解TaGS基因可变剪接有助于阐明TaGS同工酶在小麦氮代谢中的功能。

关键词: 小麦, 谷氨酰胺合成酶, 转录, 可变剪接

Abstract:

As a key enzyme for nitrogen assimilation in plant, glutamine synthetase (TaGS) is encoded by 12 genes in common wheat (Triticum aestivum L.), namely TaGS1;1-6A/6B/6D, TaGS1;2-4A/4B/4D, TaGS1;3-4A/4B/4D, and TaGS2-2A/2B/2D. Transcripts of TaGS genes were obtained using the single molecular sequencing technology, and the results showed that TaGS1;1-6A had one alternative splicing (AS) version of transcripts and TaGS1;1-6B had two AS versions. Compared with the TaGS encoded by normal transcript, TaGS1;1-6A-1 lacked part of the Gln_synt_N domain, and TaGS1;1-6B-3 lacked the Gln_synth_gly_rich_ site domain; TaGS1;1-6B-4 was a new AS event, and encoded a truncated GS without Gln_synth_gly_rich_site and Gln_synth_ cat_dom domain. The relative expression level of TaGS alternative splicing transcripts of wheat cultivars with different nitrogen use efficiencies showed that the relative expression level of TaGS1;1-6A-1 in leaves of YM49 (N-efficient) was significantly higher than that of XN509 (N-inefficient), and increased with the increase of nitrogen supply. In roots, the relative expression of TaGS1;1-6A-1 increased with the increase of nitrogen supply in YM49, but decreased in XN509. TaGS1;1-6B-3 showed a similar expression trend in YM49 and XN509, and high concentration of NO3- promoted the expression of TaGS1;1-6B-3 in leaves while inhibited in roots. High concentration of NH4+ inhibited the expression of TaGS1;1-6B-3 in leaves, but had little effect in roots. TaGS1;1-6B-4 was mainly expressed under low nitrogen condition, and its expression in roots of YM49 was not affected by NH4+ supply. Understanding the AS transcript versions of TaGS genes is helpful to illustrate the functions of TaGS isozymes in nitrogen metabolism of wheat.

Key words: glutamine synthetase, transcription, alternative splicing, wheat, glutamine synthetase, transcription, alternative splicing

表1

不同氮处理营养液组成"

氮含量
Nitrogen content
KH2PO4 MgSO4 KCl CaCl2 Ca(NO3-)2 NH4Cl
N0 0.2 1 1.5 2.5 0 0
0.2 mmol L-1 NO3- 0.2 1 1.5 2.4 0.1 0
2 mmol L-1 NO3- 0.2 1 1.5 1.5 1 0
5 mmol L-1 NO3- 0.2 1 1.5 0 2.5 0
10 mmol L-1 NO3- 0.2 1 1.5 0 5 0
20 mmol L-1 NO3- 0.2 1 1.5 0 10 0
0.2 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 0.2
2 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 2
5 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 5
10 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 10
20 mmol L-1 NH4+ 0.2 1 1.5 2.5 0 20

表2

RT-PCR引物"

转录本名称
Transcript name
引物名称
Primer name
引物序列
Primer sequence
(5′-3′)
退火温度
Annealing temperature (℃)
PCR产物长度
PCR fragment
(bp)
TaGS1;1-6A-1 TaGS1;1-6A-1-F GGCCAATACCCATATTTTCACTGTG 60 1199
TaGS1;1-6A-1-R CAGTGGCCACCCACCAAATC
TaGS1;1-6B-3 TaGS1;1-6B-3-F GCCGGAGTTGTCATCGTGG 65 460
TaGS1;1-6B-3-R CAGACACCCTGATGACGACG
TaGS1;1-6B-4 TaGS1;1-6B-4-F CCTCAGTCAGCCGGCCAT 59 708
TaGS1;1-6B-4-R GATGATTACACGACGAGAAGGTAGC
TaTEF1 TaTEF1-F GGTGACAACATGATTGAGAGGTCC 60 678
TaTEF1-R AACAGCCACAGTTTGCCTCATG

图1

TaGS基因在染色体上的位置分布 箭头所示位置是染色体着丝粒。"

图1

TaGS基因在染色体上的位置分布 箭头所示位置是染色体着丝粒。"

表3

TaGS转录本在IWGSC RefSeq v2.0和第3代测序中的差异"

TaGS同工酶 TaGS isoforms 基因编号
Gene ID
IWGSC RefSeq2.0 第3代测序分析
Third-generation sequencing analysis
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW (kD)
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW
(kD)
CPM*
TaGS1;1 TraesCS6A02G298100 TraesCS6A02G298100.1 349 38.4 TraesCS6A02G298100.1 359 39.7 6.4
TraesCS6A02G298100.2 356 39.2 TraesCS6A02G298100.2 356 39.2 103.5
TraesCS6B02G327500 TraesCS6B02G327500.1 356 39.2 TraesCS6B02G327500.1 356 39.2 154.9
TraesCS6B02G327500.2 325 35.8 0
TraesCS6B02G327500.3 322 35.6 TraesCS6B02G327500.3 322 35.6 7.6
ONT.45646.3 223 24.5 3.8
TraesCS6D02G383600LC TraesCS6D02G383600LC.1 356 39.2 TraesCS6D02G383600LC.1 356 39.2 16
TraesCS6D02G383600LC.2 325 35.8 0
TaGS1;2 TraesCS4A02G063800 TraesCS4A02G063800.1 354 38.7 TraesCS4A02G063800.1 354 38.7 114.6
TraesCS4B02G240900 TraesCS4B02G240900.1 354 38.7 TraesCS4B02G240900.1 354 38.7 134.2
TraesCS4D02G240700 TraesCS4D02G240700.1 354 38.7 TraesCS4D02G240700.1 354 38.7 170
TaGS1;3 TraesCS4A02G266900 TraesCS4A02G266900.1 362 39.6 TraesCS4A02G266900.1 362 39.6 8.8
TraesCS4B02G047400 TraesCS4B02G047400.1 362 39.5 TraesCS4B02G047400.1 362 39.5 3.3
TraesCS4D02G047400 TraesCS4D02G047400.1 362 39.5 TraesCS4D02G047400.1 362 39.5 13
TaGS2 TraesCS2A02G500400 TraesCS2A02G500400.1 427 46.7 TraesCS2A02G500400.1 427 46.7 9.7
TraesCS2A02G500400.2 423 46.09 0
TraesCS2B02G528300 TraesCS2B02G528300.1 423 46.08 0
TraesCS2B02G528300.2 369 40.63 TraesCS2B02G528300.2 427 46.7 53
TraesCS2D02G500600 TraesCS2D02G500600.1 427 46.7 TraesCS2D02G500600.1 427 46.7 27.3

表3

TaGS转录本在IWGSC RefSeq v2.0和第3代测序中的差异"

TaGS同工酶 TaGS isoforms 基因编号
Gene ID
IWGSC RefSeq2.0 第3代测序分析
Third-generation sequencing analysis
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW (kD)
转录本编号
Transcript ID
蛋白质
Protein (aa)
分子量
MW
(kD)
CPM*
TaGS1;1 TraesCS6A02G298100 TraesCS6A02G298100.1 349 38.4 TraesCS6A02G298100.1 359 39.7 6.4
TraesCS6A02G298100.2 356 39.2 TraesCS6A02G298100.2 356 39.2 103.5
TraesCS6B02G327500 TraesCS6B02G327500.1 356 39.2 TraesCS6B02G327500.1 356 39.2 154.9
TraesCS6B02G327500.2 325 35.8 0
TraesCS6B02G327500.3 322 35.6 TraesCS6B02G327500.3 322 35.6 7.6
ONT.45646.3 223 24.5 3.8
TraesCS6D02G383600LC TraesCS6D02G383600LC.1 356 39.2 TraesCS6D02G383600LC.1 356 39.2 16
TraesCS6D02G383600LC.2 325 35.8 0
TaGS1;2 TraesCS4A02G063800 TraesCS4A02G063800.1 354 38.7 TraesCS4A02G063800.1 354 38.7 114.6
TraesCS4B02G240900 TraesCS4B02G240900.1 354 38.7 TraesCS4B02G240900.1 354 38.7 134.2
TraesCS4D02G240700 TraesCS4D02G240700.1 354 38.7 TraesCS4D02G240700.1 354 38.7 170
TaGS1;3 TraesCS4A02G266900 TraesCS4A02G266900.1 362 39.6 TraesCS4A02G266900.1 362 39.6 8.8
TraesCS4B02G047400 TraesCS4B02G047400.1 362 39.5 TraesCS4B02G047400.1 362 39.5 3.3
TraesCS4D02G047400 TraesCS4D02G047400.1 362 39.5 TraesCS4D02G047400.1 362 39.5 13
TaGS2 TraesCS2A02G500400 TraesCS2A02G500400.1 427 46.7 TraesCS2A02G500400.1 427 46.7 9.7
TraesCS2A02G500400.2 423 46.09 0
TraesCS2B02G528300 TraesCS2B02G528300.1 423 46.08 0
TraesCS2B02G528300.2 369 40.63 TraesCS2B02G528300.2 427 46.7 53
TraesCS2D02G500600 TraesCS2D02G500600.1 427 46.7 TraesCS2D02G500600.1 427 46.7 27.3

图2

TaGS可变剪接的基因结构比较"

图2

TaGS可变剪接的基因结构比较"

图3

转录本TaGS1;1-6A-1和TaGS1;1-6B-4 PCR扩增 M: DNA分子量标记。箭头所指为目的条带。"

图3

转录本TaGS1;1-6A-1和TaGS1;1-6B-4 PCR扩增 M: DNA分子量标记。箭头所指为目的条带。"

图5

不同氮处理下TaGS1;1可变剪接转录本的表达"

图5

不同氮处理下TaGS1;1可变剪接转录本的表达"

图4

TaGS转录本对应的蛋白质结构域"

图4

TaGS转录本对应的蛋白质结构域"

[1] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M-B, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18:3252-3274.
[2] Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182:608-620.
Bernard S M, Habash D Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol, 2009, 182:608-620.
[3] Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67:89-105.
Bernard S M, Møller A L B, Dionisio G, Kichey T, Jahn T P, Dubois F, Baudo M, Lopes M S, Tercé-Laforgue T, Foyer C H, Parry M A J, Forde B G, Araus J L, Hirel B, Schjoerring J K, Habash D Z. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 67:89-105.
[4] Thomsen H C, Eriksson D, Møller I S, Schjoerring J K. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci, 2014, 19:656-663.
Thomsen H C, Eriksson D, Møller I S, Schjoerring J K. Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci, 2014, 19:656-663.
[5] Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W S. Alternative splicing in plants—coming of age. Trends Plant Sci, 2012, 17:616-623
Syed N H, Kalyna M, Marquez Y, Barta A, Brown J W S. Alternative splicing in plants—coming of age. Trends Plant Sci, 2012, 17:616-623
[6] 郎丹莹, 吕庚寅, 梁广旺, 李瑞航, 郭晓光, 徐虹, 郭蔼光. 小麦UROS基因的可变剪接. 麦类作物学报, 2016, 36:1553-1562.
郎丹莹, 吕庚寅, 梁广旺, 李瑞航, 郭晓光, 徐虹, 郭蔼光. 小麦UROS基因的可变剪接. 麦类作物学报, 2016, 36:1553-1562.
Lang D Y, Lyu G Y, Liang G W, Li R H, Guo X G, Xu H, Guo K G. Alternative splicing of uroporphyrinogen III synthase genes in wheat. J Wheat Crops, 2016, 36:1553-1562 (in Chinese with English abstract).
Lang D Y, Lyu G Y, Liang G W, Li R H, Guo X G, Xu H, Guo K G. Alternative splicing of uroporphyrinogen III synthase genes in wheat. J Wheat Crops, 2016, 36:1553-1562 (in Chinese with English abstract).
[7] 关海英, 何春梅, 王娟, 刘铁山, 董瑞, 刘春晓, 刘强, 汪黎明. 玉米ZmcpSRP54基因可变剪接分析. 山东农业科学, 2019, 51(6):1-9.
关海英, 何春梅, 王娟, 刘铁山, 董瑞, 刘春晓, 刘强, 汪黎明. 玉米ZmcpSRP54基因可变剪接分析. 山东农业科学, 2019, 51(6):1-9.
Guan H Y, He C M, Wang J, Liu T S, Dong R, Liu C X, Liu Q, Wang L M. Alternative splicing analysis of ZmcpSRP54 gene in maize. Shandong Agric Sci, 2019, 51(6):1-9 (in Chinese with English abstract).
Guan H Y, He C M, Wang J, Liu T S, Dong R, Liu C X, Liu Q, Wang L M. Alternative splicing analysis of ZmcpSRP54 gene in maize. Shandong Agric Sci, 2019, 51(6):1-9 (in Chinese with English abstract).
[8] 邢永强, 刘国庆, 蔡禄. Pre-mRNA选择性剪接的调控及选择性剪接数据库. 中国生物化学与分子生物学报, 2016, 32:17-28.
邢永强, 刘国庆, 蔡禄. Pre-mRNA选择性剪接的调控及选择性剪接数据库. 中国生物化学与分子生物学报, 2016, 32:17-28.
Xing Y Q, Liu G Q, Cai L. Regulation and database of pre-mRNA alternative splicing. Chin J Biochem Mol Biol, 2016, 32:17-28 (in Chinese with English abstract).
Xing Y Q, Liu G Q, Cai L. Regulation and database of pre-mRNA alternative splicing. Chin J Biochem Mol Biol, 2016, 32:17-28 (in Chinese with English abstract).
[9] Dubrovina A S, Kiselev K V, Zhuravlev Y N. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed Res Intl, 2013, 2013:264314.
Dubrovina A S, Kiselev K V, Zhuravlev Y N. The role of canonical and noncanonical pre-mRNA splicing in plant stress responses. BioMed Res Intl, 2013, 2013:264314.
[10] Kwon Y J, Park M J, Kim S G, Baldwin I T, Park C M. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol, 2014, 14:136.
Kwon Y J, Park M J, Kim S G, Baldwin I T, Park C M. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol, 2014, 14:136.
[11] Tiwari B, Habermann K, Arif M A, Weil H L, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC Plant Biol, 2020, 20:298.
Tiwari B, Habermann K, Arif M A, Weil H L, Garcia-Molina A, Kleine T, Mühlhaus T, Frank W. Identification of small RNAs during cold acclimation in Arabidopsis thaliana. BMC Plant Biol, 2020, 20:298.
[12] Reddy A S N, Ali G S. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WIRES RNA, 2011, 2:875-889.
Reddy A S N, Ali G S. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses. WIRES RNA, 2011, 2:875-889.
[13] Barbazuk W B, Fu Y, McGinnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res, 2008, 18:1381-1392.
Barbazuk W B, Fu Y, McGinnis K M. Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res, 2008, 18:1381-1392.
[14] Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010, 20:45-58.
Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010, 20:45-58.
[15] 任毅鹏, 张佳庆, 孙瑜, 吴振峰, 阮吉寿, 贺秉军, 刘国卿, 高山, 卜文俊. 基于PacBio平台的全长转录组测序. 科学通报, 2016, 61:1250-1254.
任毅鹏, 张佳庆, 孙瑜, 吴振峰, 阮吉寿, 贺秉军, 刘国卿, 高山, 卜文俊. 基于PacBio平台的全长转录组测序. 科学通报, 2016, 61:1250-1254.
Ren Y P, Zhang J Q, Sun Y, Wu Z F, Ruan J S, He B J, Liu G Q, Gao S, Bu W J. Full-length transcriptome sequencing on PacBio platform. Chin Sci Bull, 2016, 61(11):1250-1254 (in Chinese with English abstract).
Ren Y P, Zhang J Q, Sun Y, Wu Z F, Ruan J S, He B J, Liu G Q, Gao S, Bu W J. Full-length transcriptome sequencing on PacBio platform. Chin Sci Bull, 2016, 61(11):1250-1254 (in Chinese with English abstract).
[16] 张得芳, 马秋月, 尹佟明, 夏涛. 第三代测序技术及其应用. 中国生物工程杂志, 2013, 33(5):125-131.
张得芳, 马秋月, 尹佟明, 夏涛. 第三代测序技术及其应用. 中国生物工程杂志, 2013, 33(5):125-131.
Zhang D F, Ma Q Y, Yin D M, Xia T. The third generation sequencing technology and its application. Chin J Biol Engineer, 2013, 33(5):125-131 (in Chinese with English abstract).
Zhang D F, Ma Q Y, Yin D M, Xia T. The third generation sequencing technology and its application. Chin J Biol Engineer, 2013, 33(5):125-131 (in Chinese with English abstract).
[17] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析. 作物学报, 2021, 47:761-769.
王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析. 作物学报, 2021, 47:761-769.
Wang X C, Wang L L, Zhang Z Y, Qin B T, Yu M Q, Wei Y H, Ma X M. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters. Acta Agron Sin, 2021, 47:761-769 (in Chinese with English abstract).
Wang X C, Wang L L, Zhang Z Y, Qin B T, Yu M Q, Wei Y H, Ma X M. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters. Acta Agron Sin, 2021, 47:761-769 (in Chinese with English abstract).
[18] Wei Y, Wang X, Zhang Z, Xiong S, Meng X, Zhang J, Wang L, Zhang X, Yu M, Ma X. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int J Mol Sci, 2020, 21:6299.
Wei Y, Wang X, Zhang Z, Xiong S, Meng X, Zhang J, Wang L, Zhang X, Yu M, Ma X. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L.). Int J Mol Sci, 2020, 21:6299.
[19] Llorca O, Betti M, González J M, Valencia A, Márquez A J, Valpuesta J M. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol, 2006, 156:469-479.
Llorca O, Betti M, González J M, Valencia A, Márquez A J, Valpuesta J M. The three-dimensional structure of an eukaryotic glutamine synthetase: functional implications of its oligomeric structure. J Struct Biol, 2006, 156:469-479.
[20] Torreira E, Seabra A R, Marriott H, Zhou M, Llorca Ó, Robinson C V, Carvalho H G, Fernández-Tornero C, Pereira P J. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. Acta Crystallogr D, 2014, 70:981-993.
Torreira E, Seabra A R, Marriott H, Zhou M, Llorca Ó, Robinson C V, Carvalho H G, Fernández-Tornero C, Pereira P J. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture. Acta Crystallogr D, 2014, 70:981-993.
[21] Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M. Atomic structure of plant glutamine synthetase—a key enzyme for plant productivity. J Biol Chem, 2006, 281:29287-29296.
Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M. Atomic structure of plant glutamine synthetase—a key enzyme for plant productivity. J Biol Chem, 2006, 281:29287-29296.
[22] Wang X, Wei Y, Shi L, Ma X, Theg S M. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). J Exp Bot, 2015, 66:6827-6834.
Wang X, Wei Y, Shi L, Ma X, Theg S M. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.). J Exp Bot, 2015, 66:6827-6834.
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[5] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!