欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 884-891.doi: 10.3724/SP.J.1006.2009.00884

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻种子蛋白质含量及组分在品种间的变异与分布

周丽慧,刘巧泉,张昌泉,徐勇,汤述翥,顾铭洪*   

  1. 扬州大学农学院/教育部植物功能基因组重点实验室/江苏省作物遗传生理重点实验室,江苏扬州 225009
  • 收稿日期:2008-09-01 修回日期:2009-02-18 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 顾铭洪,gumh@yzu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30530470和30828021),国家高技术研究发展计划(863计划)项目(2006AA10A102),教育部新世纪优秀人才支持计划资助项目(NCET-07-0736),江苏省自然科学基金项目(BK2007510)资助。

Variation and Distribution of Seed Storage Protein Content and Composition among Different Rice Varieties

ZHOU Li-Hui,LIU Qiao-Quan,ZHANG Chang-Quan,XU Yong,TANG Su-Zhu,GU Ming-Hong   

  1. Key Laboratory of Plant Functional Genomics of Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province,Agricultural College,Yangzhou University,Yangzhou225009,China
  • Received:2008-09-01 Revised:2009-02-18 Published:2009-05-12 Published online:2009-03-23
  • Contact: GU Ming-Hong,gumh@yzu.edu.cn

摘要:

采用近红外光谱技术测定分析了351份不同类型水稻品种()糙米中的蛋白质含量,结果显示粗蛋白含量在9.3%~17.7%之间,平均为12.4%;籼稻平均蛋白质含量为13.2%,比粳稻高约1个百分点。蛋白质含量低的粳稻品种明显偏多,表现出明显的遗传不平衡现象。现有生产上主栽品种稻米蛋白质含量大多处于中等水平,而高蛋白粳稻种质极少。但仍有部分蛋白质含量极高或低的种质,如饲料稻、早籼稻和一些籼粳交后代品系蛋白质含量较高,而部分粳稻和外来籼稻品种中的蛋白质含量较低。因此可以从一些地方品种、外来品种以及籼粳交后代中筛选到极端类型的种质,为遗传育种提供研究的原材料。SDS-PAGE分析结果显示不同类型水稻间各贮藏蛋白组分具一定差异。

关键词: 水稻, 种子蛋白质含量, 种子贮藏蛋白组成, 变异, 分布

Abstract:

The crude protein contents (PC) in 351 varieties were measured by near infrared spectroscopy (NIRS) and their distribution and classification were analyzed. The results showed that the average value of crude protein content in indica and japonica types were 13.2% and 12.2%, respectively, with an average of 12.42%. The range of those above was 10.816.8%, 9.317.7%, and 9.317.7%, respectively. It elucidated that PC was higher in indica rice than in japonica rice. The huge difference in ratios of varieties (lines) based on their PC showed the genetic disequilibrium between subspecies indica and japonica, for exsample, the ratio of japonica rice with low PC was eight times that of indica rice with low PC. According to the criterion classifying varieties with different protein contents, most of rice genotypes fell into the group with intermediate PC, and there was very small number of varieties with either high or low PC, especially with very high PC in japonica rice. However, we could find some extreme individuals which PC were very high/low, such as those with high PC: forage rice, early maturity varieties and indica-japonica hybrid progenies close to indica in the subspecies of indica, or close to japonica in the subspecies of japonica; and those with low PC: some japonica rice (but the PC not low enough), some overseas germplasms in indica. Thus it was not impossible to find out extreme germplasms on PC from landrace, overseas germplasms or india-japonica hybrid progenies etc., which are fine basic materials in genetic and breeding researchs. From the results of SDS-PAGE analysis of the total seed storage proteins among some representative varieties, we could know that the seed storage protein composition was different among different types of rice genotypes.

Key words: Rice(Oryza sativa L.), Seed crude protein content, Seed storage proteins, Variation, Distribution


[1] Juliano B O ed. Rice Chemistry and Technology, 2nd edn. Minnesota USA: American Association of Cereal Chemists Inc. 1985. pp 1–174

[2] Liu Q-Q(刘巧泉). Genetically engineering rice for increased lysine. PhD Dissertation of Yangzhou University, 2002 (in Chinese with English abstract)

[3] Gomez K A. Effect of environment on protein and amylose content of rice. In: Chemical aspects of rice grain quality. IRRI, 1979. pp 59–68

[4] Webb B D, Bollich C N. Characteristics of rice varieties in the US department of agriculture collection. Crop Sci, 1968, 8: 361–365

[5] Juliano B O, Perez C M, Gomez K A. Variability in pretion content of rice. Kalikasan, 1972, 1: 74–81

[6] Zhang R-P(张瑞品), Xie Y-F(谢岳峰). Breeding of rice quality (水稻品质育种). In: Liu H L(刘后利) ed. Breeding of Crop Quality (农作物品质育种), Wuhan: Hubei Science & Technology Press, 2001.pp 22–99 (in Chinese)

[7] Chen N(陈能), Luo Y-K(罗玉坤), Xie L-H(谢黎虹), Zhu Z-W(朱智伟), Duan B-W(段彬伍), Zhang L-P(章林平). Protein content and its correlation with other quality parameters of rice in China. Acta Agron Sin (作物学报), 2006, 32(8): 1193–1196 (in Chinese with English abstract)

[8] Liu J-X(刘建学), Wu S-Y(吴守一). Rapid measurement of rice protein content by near infrared spectroscopy. Trans Chin Soc Agric Machinery (农业机械学报), 2001, 32(3): 68–70 (in Chinese with English abstract)

[9] Siesler H W. Near infrared reflectance spectroscopy (NIRS): A method of rational multicomponent analysis. Mikrochimica Acta, 1998, 1: 117–120

[10] John S S, Mark O W. Accuacy of NIRS instruments to analyze forage and grain. Crop Sci, 1985, 25: 1120–1122

[11] AOAC, Association of Official Analytical Chemists Official Methods of Analysis, 16th ed. Method 990.03, The Association, Washington, DC. 1995. pp 35–43

[12] Zhou L-H(周丽慧), Liu Q-Q(刘巧泉), Zhang C-Q(张昌泉), Xu Y(徐勇), Tang S-Z(汤述翥), Gu M-H(顾铭洪). The crude protein contents in rice grain measured by two different methods and their relationship, J Yangzhou Univ (Agri & Life Sci Edn) (扬州大学学报·农业与生命科学版), 2009, 30(1) (in press) (in Chinese with English abstract)

[13] Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol, 1982, 70: 1094–1100

[14] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989

[15] Kubo T. Development of low-glutelin rice by Agrobacterium-mediated genetic transformation with an antisense gene construct. In: Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, Geneva (Switzerland), 29 May–2 June, 2000; FAO, Rome (Italy) and WHO, Geneva (Switzerland), 2000. pp 1–5

[16] Gomez K A, De Datta S K. Influence of environment on protein content of rice. Agron J, 1975, 67:565–568

[17] Liu Q-Q(刘巧泉), Zhou L-H(周丽慧), Wang H-M(王红梅), Gu M-H(顾铭洪). Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed (分子植物育种), 2008, 6(1): 1–15 (in Chinese with English abstract)

[18] Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K. Mutants for rice storage proteins. Theor Appl Genet, 1988, 76: 11–16

[19] Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. Low glutelin content1: a dominant mutation that suppresses the Glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455–1467

[20] Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet, 1993, 87: 374–378

[21] Iida S, Kusaba M, Nishio T. Mutants lacking glutelin subunits in rice: Mapping and combination of mutated glutelin genes. Theor Appl Genet, 1997, 94: 177–183

[22] Lu C(卢诚), Pan X-G(潘熙淦). Inheritance of wide compatibility in rice cultivars 02428 and 8504. Chin J Rice Sci (中国水稻科学), 1992, 6(3): 113–118 (in Chinese with English abstract)

[23] Sano Y, Makekawa M, Kikuchi H. Temperature effects on Wx protein level and amylose content in the endosperm of rice. Heredity, 1985, 76: 221–222

[24] Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rice: 5. Inter- and intra-specific differentiation in the waxy gene expression of rice. Euphytica, 1986, 35: l–9

[25] Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Gao M-W(高明蔚). Microsatellites polymorphism on the waxy gene locus and their relationship to armylose content in indica and japonica rice, Oryza sativa L. Acta Genet Sin (遗传学报), 1999, 26(4): 350–358 (in Chinese with English abstract)

[26] Jin W D, Li N, Hong D L. Genetic diversity of seed storage proteins in different ecotype varieties of japonica rice and its application. Rice Sci, 2006, 13(2): 85–92

[27] Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M. Aberrant splicing of intron 1 leads to the heterogeneous 5’UTR and decreased expression of waxy gene in rice cuhivars of intermediate amylose content. Plant J, 1998, 14: 459–465

[28] Bligh H F J, Larkin P D, Roach P S, Jones C A, Fu H, Park W D. Use of alternate splice sites in granule bound starch synthase mRNA from low amylose rice varieties. Plant Mol Biol, 1998, 38: 407–415

[29] Isshiki M, Morino K, Nakajima M, Okagaki R J, Wessler S R, Izawa T, Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant J, 1998, 15: 133–138

[30] Hirano H Y, Eiguchi M, Sano Y. A single base change altered the regulation of the waxy gene at post-transcriptional level during the domestication of rice. Mol Biol Evol, 1998, 15: 978–987

[31] Cai X-L(蔡秀玲), Liu Q-Q(刘巧泉), Tang S-Z(汤述翥), Gu M-H(顾铭洪), Wang Z-Y(王宗阳). Development of a molecular marker for screening the rice cultivars with intermediate amylose content in rice. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2002, 28(2): 137–144 (in Chinese with English abstract)
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!