作物学报 ›› 2009, Vol. 35 ›› Issue (5): 884-891.doi: 10.3724/SP.J.1006.2009.00884
周丽慧,刘巧泉,张昌泉,徐勇,汤述翥,顾铭洪*
ZHOU Li-Hui,LIU Qiao-Quan,ZHANG Chang-Quan,XU Yong,TANG Su-Zhu,GU Ming-Hong
摘要:
采用近红外光谱技术测定分析了351份不同类型水稻品种(系)糙米中的蛋白质含量,结果显示粗蛋白含量在9.3%~17.7%之间,平均为12.4%;籼稻平均蛋白质含量为13.2%,比粳稻高约1个百分点。蛋白质含量低的粳稻品种明显偏多,表现出明显的遗传不平衡现象。现有生产上主栽品种稻米蛋白质含量大多处于中等水平,而高蛋白粳稻种质极少。但仍有部分蛋白质含量极高或低的种质,如饲料稻、早籼稻和一些籼粳交后代品系蛋白质含量较高,而部分粳稻和外来籼稻品种中的蛋白质含量较低。因此可以从一些地方品种、外来品种以及籼粳交后代中筛选到极端类型的种质,为遗传育种提供研究的原材料。SDS-PAGE分析结果显示不同类型水稻间各贮藏蛋白组分具一定差异。
[1] Juliano B O ed. Rice Chemistry and Technology, 2nd edn. Minnesota USA: American Association of Cereal Chemists Inc. 1985. pp 1–174 [2] Liu Q-Q(刘巧泉). Genetically engineering rice for increased lysine. PhD Dissertation of Yangzhou University, 2002 (in Chinese with English abstract) [3] Gomez K A. Effect of environment on protein and amylose content of rice. In: Chemical aspects of rice grain quality. IRRI, 1979. pp 59–68 [4] Webb B D, Bollich C N. Characteristics of rice varieties in the US department of agriculture collection. Crop Sci, 1968, 8: 361–365 [5] Juliano B O, Perez C M, Gomez K A. Variability in pretion content of rice. Kalikasan, 1972, 1: 74–81 [6] Zhang R-P(张瑞品), Xie Y-F(谢岳峰). Breeding of rice quality (水稻品质育种). In: Liu H L(刘后利) ed. Breeding of Crop Quality (农作物品质育种), Wuhan: Hubei Science & Technology Press, 2001.pp 22–99 (in Chinese) [7] Chen N(陈能), Luo Y-K(罗玉坤), Xie L-H(谢黎虹), Zhu Z-W(朱智伟), Duan B-W(段彬伍), Zhang L-P(章林平). Protein content and its correlation with other quality parameters of rice in China. Acta Agron Sin (作物学报), 2006, 32(8): 1193–1196 (in Chinese with English abstract) [8] Liu J-X(刘建学), Wu S-Y(吴守一). Rapid measurement of rice protein content by near infrared spectroscopy. Trans Chin Soc Agric Machinery (农业机械学报), 2001, 32(3): 68–70 (in Chinese with English abstract) [9] Siesler H W. Near infrared reflectance spectroscopy (NIRS): A method of rational multicomponent analysis. Mikrochimica Acta, 1998, 1: 117–120 [10] John S S, Mark O W. Accuacy of NIRS instruments to analyze forage and grain. Crop Sci, 1985, 25: 1120–1122 [11] AOAC, Association of Official Analytical Chemists Official Methods of Analysis, 16th ed. Method 990.03, The Association, Washington, DC. 1995. pp 35–43 [12] Zhou L-H(周丽慧), Liu Q-Q(刘巧泉), Zhang C-Q(张昌泉), Xu Y(徐勇), Tang S-Z(汤述翥), Gu M-H(顾铭洪). The crude protein contents in rice grain measured by two different methods and their relationship, J Yangzhou Univ (Agri & Life Sci Edn) (扬州大学学报·农业与生命科学版), 2009, 30(1) (in press) (in Chinese with English abstract) [13] Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol, 1982, 70: 1094–1100 [14] Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989 [15] Kubo T. Development of low-glutelin rice by Agrobacterium-mediated genetic transformation with an antisense gene construct. In: Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, Geneva (Switzerland), 29 May–2 June, 2000; FAO, Rome (Italy) and WHO, Geneva (Switzerland), 2000. pp 1–5 [16] Gomez K A, De Datta S K. Influence of environment on protein content of rice. Agron J, 1975, 67:565–568 [17] Liu Q-Q(刘巧泉), Zhou L-H(周丽慧), Wang H-M(王红梅), Gu M-H(顾铭洪). Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed (分子植物育种), 2008, 6(1): 1–15 (in Chinese with English abstract) [18] Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K. Mutants for rice storage proteins. Theor Appl Genet, 1988, 76: 11–16 [19] Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. Low glutelin content1: a dominant mutation that suppresses the Glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455–1467 [20] Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet, 1993, 87: 374–378 [21] Iida S, Kusaba M, Nishio T. Mutants lacking glutelin subunits in rice: Mapping and combination of mutated glutelin genes. Theor Appl Genet, 1997, 94: 177–183 [22] Lu C(卢诚), Pan X-G(潘熙淦). Inheritance of wide compatibility in rice cultivars 02428 and 8504. Chin J Rice Sci (中国水稻科学), 1992, 6(3): 113–118 (in Chinese with English abstract) [23] Sano Y, Makekawa M, Kikuchi H. Temperature effects on Wx protein level and amylose content in the endosperm of rice. Heredity, 1985, 76: 221–222 [24] Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rice: 5. Inter- and intra-specific differentiation in the waxy gene expression of rice. Euphytica, 1986, 35: l–9 [25] Shu Q-Y(舒庆尧), Wu D-X(吴殿星), Xia Y-W(夏英武), Gao M-W(高明蔚). Microsatellites polymorphism on the waxy gene locus and their relationship to armylose content in indica and japonica rice, Oryza sativa L. Acta Genet Sin (遗传学报), 1999, 26(4): 350–358 (in Chinese with English abstract) [26] Jin W D, Li N, Hong D L. Genetic diversity of seed storage proteins in different ecotype varieties of japonica rice and its application. Rice Sci, 2006, 13(2): 85–92 [27] Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M. Aberrant splicing of intron 1 leads to the heterogeneous 5’UTR and decreased expression of waxy gene in rice cuhivars of intermediate amylose content. Plant J, 1998, 14: 459–465 [28] Bligh H F J, Larkin P D, Roach P S, Jones C A, Fu H, Park W D. Use of alternate splice sites in granule bound starch synthase mRNA from low amylose rice varieties. Plant Mol Biol, 1998, 38: 407–415 [29] Isshiki M, Morino K, Nakajima M, Okagaki R J, Wessler S R, Izawa T, Shimamoto K. A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant J, 1998, 15: 133–138 [30] Hirano H Y, Eiguchi M, Sano Y. A single base change altered the regulation of the waxy gene at post-transcriptional level during the domestication of rice. Mol Biol Evol, 1998, 15: 978–987 [31] Cai X-L(蔡秀玲), Liu Q-Q(刘巧泉), Tang S-Z(汤述翥), Gu M-H(顾铭洪), Wang Z-Y(王宗阳). Development of a molecular marker for screening the rice cultivars with intermediate amylose content in rice. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2002, 28(2): 137–144 (in Chinese with English abstract) |
[1] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[6] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|