欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1336-1343.doi: 10.3724/SP.J.1006.2009.01336

• 耕作栽培·生理生化 • 上一篇    下一篇

植物生长调节剂对油菜生长及冻害后光合作用和产量的调控效应

马霓,刘丹,张春雷*,李俊,李光明   

  1. 中国农业科学院油料作物研究所,湖北武汉430062
  • 收稿日期:2008-10-23 修回日期:2009-03-20 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 张春雷, E-mail: clzhang@vip.sina.com; Tel: 027-86739796
  • 基金资助:

    本研究由国家“十一五”科技支撑计划重点项目课题(2006BAD21B03)和中国农科院油料所所长基金(SZ200803-07)资助。

Regulation Effects of Exogenous Hormones on Growth and Photosynthesis and Yield of Rapeseed(Brassica napus L.)after Frozen

MA Ni,LIU Dan,ZHANG Chun-Lei*,LI Jun,LI Guang-Ming   

  1. Oil Crops Research Institute Chinese Academy of Agricultural Sciences,Wuhan 430062,China
  • Received:2008-10-23 Revised:2009-03-20 Published:2009-07-12 Published online:2009-05-19
  • Contact: ZHANG Cun-Lei, E-mail: clzhang@vip.sina.com; Tel: 027-86739796

摘要:

在油菜始花期喷施不同浓度的脱落酸(ABA)和油菜素内酯(BR),分析其对油菜叶片光合速率和产量的影响;20081月低温冰冻天气之后,采用优化浓度的ABABR处理,测定油菜叶片的气体交换参数和叶绿素荧光参数,比较角果形态变化规律及产量构成因素。主要结果如下。与对照(CK)相比,喷施76×10-6 mol L-1ABA1×10-6 mol L-1BR能延缓叶片光合速率的下降,冻害后喷施该浓度ABABR提高了叶片净光合速率(Pn)、光饱和点(LSP)、气孔导度(Gs)、胞间CO2浓度(Ci)与蒸腾速率(Tr);最大光化学效率(Fv/Fm)、光系统II量子产量(ΦPSII)与光化学猝灭系数(qP)均升高,叶绿素初始荧光(Fo)和非光化学猝灭系数(NPQ)降低,ABABR处理还提高叶片中叶绿素含量及可溶性蛋白的含量;角果面积增大,BR处理后单株角果数、每角粒数、千粒重及产量都比对照增加,ABA处理可增加角粒数和千粒重, 进而提高油菜的产量。总之,76×10-6 mol L-1ABA1×10-6 mol L-1BR能促进油菜生长并有效缓解油菜冻害的影响。

关键词: 甘蓝型油菜, 冻害, 外源激素, 光合作用, 产量

Abstract:

Different contents of exogenous hormones were applied on rapeseed at the initial blossoming stage. The net photosynthetic rate (Pn) and yield were investigated. In January 2008, a heavy snow and low temperature for a period destroyed crops including winter rape. In this experiments exogenous hormones ABA and BR with optimal contents were applied on the rapeseed (Brassica napus L.) plants after the frozen from the worst weather. The gas exchange parameters and chlorophyll fluorescence characteristics of leaves as well as the regularity of pod size changes and yield components were determined. The results were as follows: ABA (76×10-6 mol L-1)and BR(1×10-6 mol L-1) could delay the decreasing of net photosynthetic rate (Pn) in short petiole leaves. The Pn, stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr) and photosynthetic saturated light intensity (LSP) were increased after exogenous hormones treatment. ABA and BR treatments also caused a significant increase in the maximus photchemical efficiency of photosystem II (Fv/Fm), the quantum yield of electron transport (ΦPSII), the photochemical quenching co-efficient (qP), Chl content and soluble protein content. These changes were accompanied by the decline in both minimal fluorescence (Fo) and non-photochemical quenching co-efficient (NPQ). The pod surface areas per pod were increased. The number of the first branches per plant and seeds per pod and 1000-seed weight were raised, resulting in improvement of yield after BR treatment. As to the plants after ABA treatment, the high yield was mainly attributed to the increasing of seeds per pod and 1000-seed weight. In conclusion, ABA (76×10-6 mol L-1) and BR (1×10-6 mol L-1) treatments are effective on promoting the growth and relieving the negative effects of frozen on rapeseed.

Key words: Rapeseed(B.napus L.), Frozen, Exogenous hormone, Photosynthesis, Yield


[1] Lü J(吕军), Wang B-L(王伯伦), Meng W-R(孟维韧), Zhao F-Y(赵凤艳). The characteristics of photosynthesis and dry matter production in Japonica ricecultivars with different type panicles. Sci Agric Sin (中国农业科学), 2007, 40(5): 902-908(in Chinese with English abstract)

[2] Levitt J. Responses of Plants to Environmental Stresses.: Chilling, freezing, and high temperature stresses, 2nd edn. Vol. 1. New York: Academic Press, 1980, pp 365-434

[3] Jian L-C(简令成). Advances of the studies on the mechanism of plant cold hardiness. Chin Bull Bot (植物学通报), 1992, 9(3): 17-22(in Chinese with English abstract)

[4] Grafflage S, Krause G H. Simulation of in situ freezing damage of the photosynthetic apparatus by freezing in vitroof thylakoids suspended in complex media. Planta,1986, 168: 67-76



[5] Hetherington S E, He J,

[6] Li X-G(李新国), Duan W(段伟). PS I photoinhibition under low temperature. Plant Physiol Commun (植物生理学通讯), 2002, 38(4): 375-381(in Chinese)

[7] Bilger W, Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res, 1990, 25: 173-186

[8] Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu Q-S(朱庆森), Su B-L(苏宝林). Regulation of ABA and GA to the grain filling rice. Acta Agron Sin (作物学报), 1999, 25(3): 341-348(in Chinese with English abstract)

[9] Yang J-C(杨建昌), Chang E-H(常二华), Zhang W-J(张文杰), Wang Z-Q(王志琴) , Liu L-J(刘立军). Relationship between root chemical signals and grain quality of rice. Sci Agric Sin (中国农业科学), 2006, 39(1): 38-47(in Chinese with English abstract)

[10] Guan C-Y(官春云), Huang T-P(黄太平), Li X(李栒), Chen S-Y(陈社员). Effect of different hormones on siliques growth and seeds maturity in rapeseed (B. napus). Chin J Oil Crop Sci (中国油料作物学报), 2004, 26 (1): 5-7(in Chinese with English abstract)

[11] Tan Z-B(谭振波), Liu X(刘昕), Cao M-Q(曹鸣庆). Recent advances on mechanisms of maize chilling toleranceJ Maize Sci (玉米科学), 2002, 10(2): 56-60(in Chinese with English abstract)

[12] Nayyara H, Bainsb T S, Kumara S. Chilling stressed chickpea seedlings: Effect of cold acclimation, calcium and abscisic acid on cryoprotective solutes and oxidative damage. Environ Exp Bot, 2005, 54: 275-285

[13]Zhou Q(周琴), Sun X-F(孙小芳), Guo Y-L(郭月玲), Jiang H-D(江海东). Effects of 6-BA and PP333 on the ability of freezing tolerance of oil rape (Brassica napus) seeding. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 286-290(in Chinese with English abstract)

[14]Zhang X-K(张学昆), Zhang C-L(张春雷), Liao X(廖星), Wang H-Z(王汉中). Investigation on 2008’ low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 122-126(in Chinese with English abstract)

[15]Aroca R, Vernieri P, Irigoyen J J, Sanchez-Diaz M, Tognoni F, Pardossi A. Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Sci, 2003, 165: 671-679

[16]Liu R-X(刘瑞显),Wang Y-H(王友华), Chen B-L(陈兵林), Guo W-Q(郭文琦), Zhou Z-G(周治国). Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll forming stage. Acta Agron Sin (作物学报), 2008, 34(4): 675-683(in Chinese with English abstract)

[17] Wang X-K(王学奎). Principles and Techniques of Plant Physiological Biochemical Experiment (植物生理生化实验原理和技术), 2nd edn. Beijing: Higher Education Press, 2006. pp 190-192(in Chinese)

[18] Clark J M. The effect of leaf removal on yield components of Brassica napus. Can J Plant Sci, 1978, 58: 1103-1105

[19] Xiang B(项斌), Lin S-H(林舜华), Gao L-M(高雷明). Responses to doubled CO2 in Medicago sativa: Studies on ecophysiology and simulation modeling. Acta Bot Sin (植物学报), 1996, 38(1): 62-71(in Chinese with English abstract)

[20] Guo L-W(郭连旺), Shen Y-G(沈允钢). Protective mechanisms against photodamage in photosynthetic apparatus of higher plants.Plant Physiol Commun (植物生理学通讯), 1996, 32(1): 1-8(in Chinese with English abstract)


[21]
Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta, 1989, 990: 87-92

[22] Schreiber U, Aromond S U, Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta, 1987, 502: 138-151

[23] Maxwell K, Johnson G N. Chlorophyll fluorescence: A practical guide. J Exp Bot, 2000, 51: 659-668

[24] Huang X-Q(黄雪青), Jiao D-M(焦德茂), Li X(李霞). Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation of various high-yield rice under photooxidation conditions. Acta Bot Sin (植物学报), 2002, 44(3): 279-286(in Chinese with English abstract)

[25] Robert D R, Thompson J E, Dmberff E B. Differential changes in the synthesis and steady-levels of thyokoid protein during bean leaf senescence. Plant Mol Biol, 1987, 9: 343-353

[26] Peng C L, Lin Z F, Lin G Z, Chen S W. The anti-photoxidation of anthocyanins-rich leaves of a purple rice cultivar. Sci China (Ser C), 2006, 36(3): 209-216

[27] Hou L-P(侯雷平), Li M-L(李梅兰). Progress of studies on the plant growth promoting mechanism of Brassinolide (BR). Chin Bull Bot (植物学通报), 2001,18 (5): 560-566(in Chinese with English abstract)

[28] Leng S-H(冷锁虎), Zhu G-R(朱耕如), Deng X-L(邓秀兰).Studies on the sources of the dry matter in the seed of rapeseed. Acta Agron Sin (作物学报), 1992, 18 (4): 250-258(in Chinese with English abstract)

[29] Leng S-H(冷锁虎), Zuo Q-S(左青松), Dai J(戴敬), Yu Y-Z(喻义珠). Studies on indices of high yield population quality of rapeseed. Chin J Oil Crop Sci (中国油料作物学报), 2004, 26 (4): 38-45(in Chinese with English abstract)

[30] Chandler P M, Robertson M. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Pant Mol Biol, 1994, 45: 113-141

[31] Nayyar H, Kaushal S K. Chilling induced oxidative stress in germinating wheat grains as affected by water stress and calcium. Biol Plant, 2002, 45: 601-604

[32] Xing W, Rajashekar C B. Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot,2001, 46: 21-28 Smillie R M. Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiol, 1989, 90: 1609-1615

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!