欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1662-1671.doi: 10.3724/SP.J.1006.2009.01662

• 耕作栽培·生理生化 • 上一篇    下一篇

我国玉米自交系叶片保绿性及其与产量的关系

刘开昌1,董树亭2,赵海军1,王庆成1,*,李宗新1,刘霞1,张慧1   

  1. 1山东省农业科学院玉米研究所,山东济南250100;2山东农业大学作物学国家重点实验室,山东泰安271018
  • 收稿日期:2008-12-31 修回日期:2009-04-23 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 王庆成, E-mail: qcwang@saas.ac.cn; Tel: 0531-83179402
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2006BAD02A09,2007BAD89B09,2007BAD31B03),山东省农业科学院博士基金项目(2007YBS002),山东省农业科学院高技术自主创新基金(2007YCX024)资助。

Leaf Stay-Green Traits in Chinese Maize Inbred Lines and Their Relationship with Grain Yield

LIU Kai-Chang1,DONG Shu-Ting2,ZHAO Hai-Jun1,WANG Qing-Cheng1,*,LI Zong-Xin1,LIU Xia1,ZHANG Hui1   

  1. 1 Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 2 State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2008-12-31 Revised:2009-04-23 Published:2009-09-12 Published online:2009-07-04
  • Contact: WANG Qing-Cheng, E-mail: qcwang@saas.ac.cn; Tel: 0531-83179402

摘要:

选用我国75个常用不同基因型玉米自交系,对其叶片保绿性参数进行了定点动态测定。结果表明,不同自交系抽丝后叶片保绿度的变化均符合方程y = aeb-cx/ (1+eb-cx),成熟期的绿叶数、成熟期叶绿素含量和相对绿叶面积平均衰减速率(Vm)可作为区分玉米保绿型与非保绿型的关键指标。按照Hiechical聚类分析方法,筛选出12个保绿型自交系,其成熟期相对绿叶面积在60%以上,其Vm平均值为0.687% d-1,在生长季内相对绿叶面积无大幅度衰减,成熟期绿叶数多,叶绿素含量较高;其余63个为非保绿型自交系,还可分为植株叶片衰老较快型与植株叶片衰老较慢型两个亚类。不同自交系抽丝后叶片保绿性与叶面积持续期、单株产量均呈正相关。保绿型的叶面积持续期和单株产量比非保绿型分别高20.02%~23.87%50.44%~59.38%;与非保绿型自交系相比,保绿型在籽粒灌浆期绿叶面积大,叶绿素含量高,群体光合速率高,光合作用时间长,因而生物产量较高。

关键词: 玉米, 自交系, 保绿性, 产量

Abstract:

Leaf stay-green trait is one of the major targets in maize (Zea mays L.) breeding. Although sugar concentration in culm, green leaf number, leaf area, and chlorophyll content at maturity have been used to evaluate the stay-green trait of maize in earlier studies, there is no a common criterion. To further study the evaluation system for stay-green in maize and disclose the relationship of stay-green with grain yield, we sampled 75 inbred lines from common parents of Chinese maize cultivars. At silking stage and 10, 20, 30, 40, 50, and 60 d after silking, the leaf area (LA), leaf area duration (LAD), relative leaf area, and relative green-leaf area (RGLA) were measured. The results showed that the changes of RGLA after silking accorded with the equation of y = aeb-cx/ (1+eb-cx). On the basis of correlation analysis, the green leaf number, chlorophyll content at physiological maturity, and mean decreasing rate of RGLA (Vm) were selected as the key indices to discriminate the stay-green and non-stay-green maize genotypes. According to relative green leaf area at physiological maturity (MRGLA), the maximum decrease rate of RGLA (Vmax), and the mean decreasing rate of RGLA (Vm), the 75 inbred lines were classified into stay-green and non-stay-green two types with Hiechical clustering analysis. The stay-green type was composed of 12 inbred lines with the following common characteristics: MRGLA of more than 60%, Vm of 0.687% d-1, no significant decrease of RGLA during the whole growing period (67.07% at maturity), and high green leaf number (8.8 leaves) and chlorophyll content (4.43 mg dm-2) at physiological maturity. The non-stay-green type, consisting of 63 inbred lines, was further categorized with quick-leaf-senescence (50 inbred lines) and slow-leaf-senescence (13 inbred lines) subgroups. In the quick- and slow-leaf senescence subgroups, the RGLA at maturity, Vm, green leaf number at maturity, and chlorophyll content at maturity were 17.75% and 33.55%, 1.89% d-1 and 1.44% d-1, 3.2 and 6.2, and 2.06 mg dm-2 and 3.17 mg dm-2, respectively. At physiological maturity, the RGLA was positively correlated with LAD (r= 0.8861, P < 0.01) and yield per plant (r = 0.8221, P < 0.01). The LAD and yield per plant were 20.02–23.87% and 50.44–59.38% higher in the stay-green type than in the non-stay-green type, respectively. Thus, the stay-green type had higher yield potential due to larger green leaf area, higher chlorophyll content and photosynthesis efficiency as well as longer photosynthesis duration.

Key words: Maize, Inbred line, Stay-green, Yield

[1] Pan R-C(潘瑞炽). Plant Physiology (植物生理学). Beijing: Higher Education Press, 2004 (in Chinese)

[2] Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329-337

[3] Subudhi P K, Rosenow D T, Nguyen H T. Quantitative trait loci for the stay-green trait in sorghum (Sorghum bicolor L. Moench): Consistency across genetic backgrounds and environments. Theor Appl Genet, 2000, 101: 733-741

[4] Haussmann B I G, Mahalakshmi V, Reddy B V S. QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet, 2002, 106: 133-142

[5] Tollenaar M, Daynard T B. Leaf senescence in short-season maize hybrids. Can J Plant Sci, 1978, 58: 869-874

[6] Ceppi D, Sala M, Gentinetta E. Genotype-dependent leaf senescence in maize: 1. Inheritance and effects of pollination-prevention. Plant Physiol, 1987, 85: 720-725

[7] Craft-brandner S J, Below F E, Wittenbach V A. Effect of ear removal on CO2 exchange and activties of ribulose bisphate earboxylase and phosphoenlpyruvate carboxylase of maize hybrids and inbred lines. Plant Physiol, 1987, 84: 261-265

[8] Phillips D A, Pierce R O, Edie S A, Foster K A, Knowles P F. Delay leaf senescence in soybean. Crop Sci, 1984, 24: 518-522

[9] Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193-219

[10] Xu W W, Rosenow D T, Nguyen H T. Stay-green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed, 2000, 119: 365-367

[11] Borrell A K, Hammer G H. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci, 2000, 40: 1037-1048

[12] Gentinetta E, Ceppi D, Lepori C, Perico G, Motto M, Salamini F. A major gene for delayed senescence in maize: Pattern of photosynthates accumulation and inheritance. Plant Breed, 1986, 97: 193-203

[13] Duncan R R. The association of plant senescence with root and stalk diseases in sorghum. In: Mughogho L K, Rosenberg G, eds. Sorghum Root and Stalk Rots: A Critical Review. Proceedings of the Consultative Group Discussion on Research Needs and Strategies for Control of Sorghum Root and Stalk Rot Diseases. Bellagio, Italy & Patancheru, India: ICRISAT, 1984. pp 99-110

[14] Guo Q-F(郭庆法), Wang Q-C(王庆成), Wang L-M(汪黎明). Maize Cultivation in China (中国玉米栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2004. pp 32-34 (in Chinese)

[15] Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩).Development of canopy apparent photosynthesis among maize varieties from different eras. Acta Agron Sin (作物学报), 2000, 26(2): 200-204 (in Chinese with English abstract)

[16] Duvick D N. Genetic rates of grain in hybrid maize yields during the past 40 years. Maydica, 1997, 23: 187-196

[17] Russell W A. Registration of B93 and B94 inbred lines of maize. Crop Sci, 1991, 31: 247-248

[18] Choi K J, Chin M S, Park K Y, Kim S L, Chung T W, Lee H S. Segregation of stay-green characters in an F2 population. Maize Genetics Cooperation Newsl, 1995, 69: 123

[19] Chfistens L E, Below F E. Hagreman R H. The effect of ear removal on sevwscence and metabolism of maize. Plant Physiol, 1981, 68: 1180-1185

[20] Bekavac G. Path analysis of stay-green trait in maize. Cereal Res Commun, 1998, 26: 161-167

[21] Walulu R S, Darrell T R, Wester D B, Nguyen H T. Inheritance of the stay green trait in sorghum. Crop Sci, 1994, 34: 970-972

[22] Waggoner P E, Berger R D. Defoliation, disease, and growth. Phytioathology, 1987, 77: 393-398

[23] Wang J-G(王建国), Du G-J(杜桂娟), Cai J-X(蔡纪新), Zhang B-S(张宝石). Relationship between stay-green and other agronomic traits in maize. Rain Fed Crops (杂粮作物), 2003, 23(6): 336-339 (in Chinese with English abstract)

[24] Craft-Brandner S J, Below F E, Wittenbach V A, Harper J E, Hageman R H. Differential senescence of maize hybrids following ear removal: II. Selected leaf. Plant Physiol, 1984, 74: 368-373

[25] Yang J-P(杨俊品), Rong T-Z(荣廷昭), Xiang D-Q(向道权), Tang H-T(唐海涛), Huang L-J(黄烈健), Dai J-R(戴景瑞). QTL mapping of quantitative traits in maize. Acta Agron Sin (作物学报), 2005, 31(2): 188-196 (in Chinese with English abstract)

[26] Liu K-C(刘开昌), Wang Q-C(王庆成), Zhang H-S(张海松), Feng K(冯凯). Advance in research of physiological mechanism and genetic traits of stay-green of maize. Shandong Agric Sci (山东农业科学), 2003, (2): 48-51(in Chinese with English abstract)

[27] Zheng H-J(郑洪建), Shen X-F(沈雪芳), Wu A-Z(吴爱忠). The research advance in inheritance of stay-green traits of maize leaf blades.Acta Agric Shanghai(上海农业学报), 2007, 23(4): 90-94 (in Chinese with English abstract)

[28] Zhu Z-P(朱治平). Laboratory Manual of Plant Physiology (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publishers, 1985 (in Chinese)

[29] Oosterom E J van, Jayachandran R, Bidinger F R. Diallel analysis of the stay green trait and its components in sorghum. Crop Sci, 1996, 36: 549-555

[30] Nguyen H T, Xu W W, Rosenow D T, Mullet J E, McIntyre L. Use of biotechnology in sorghum drought resistance breeding. In: Proceedings of the International Conference on Genetic Improvement of Sorghum and Pear Millet, Lubbock, Texas, USA, 1996. pp 412-424

[31] Crasta O R, Xu W W, Rosenow D T, Mullet J E, Nguyen H T. Mapping of post-flowering drought resistance traits in grain sorghum: Association of QTLs influencing senescence and maturity. Mol Gen Genet, 1999, 262: 579-588

[32] Wan C, Xu W W, Sosebee R E, Machado S, Archer T. Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant & Soil, 2000, 219: 117-126

[33] Thomas H, Morgan W G, Thomas A M, Ougham H J. Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis. Theor Appl Genet, 1999, 99: 92-99

[34] Smart C M, Hosken S E, Thomas H, Greaves J A, Blair B G, Schuch W. The timing of maize leaf senescence and characterisation of senescence-related cDNAs. Physiol Plant, 1995, 93: 673-682

[35] Willman M R, Below F E, Lambert R J, Howey A E, Mies D W. Plant traits related to productivity of maize: II. Development of multiple trait models. Crop Sci, 1987, 27: 1122-1126

[36] Dong S-T(董树亭), Gao R-Q(高荣岐), Hu C-H(胡昌浩), Wang Q-Y(王群瑛), Wang K-J(王空军).Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin (作物学报), 1997, 23(3): 318-325 (in Chinese with English abstract)

[37] Wada Y, Wada G. Varietal difference in leaf senescence during ripening period of advanced indica rice. Jpn J Crop Sci, 1991, 60: 529-536

[38] Bolanos J, Edmeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res, 1996, 48: 65-80
Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet, 2004, 108: 688-698
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!