作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1672-1680.doi: 10.3724/SP.J.1006.2009.01672
刘立军,杨立年,孙小淋,王志琴,杨建昌*
LIU Li-Jun,YANG Li-Nian,SUN Xiao-Lin,WANG Zhi-Qin,YANG Jian-Chang*
摘要:
以代表性品种为材料,研究了水稻实地氮肥管理(SSNM)的氮肥利用效率及其生理机制。结果表明,SSNM的施氮量较常规施肥方法(FFP)降低了48.1%~63.0%,产量提高了0.1%~9.3%。SSNM的氮肥吸收利用率和农学利用率分别较FFP提高了31.4%~56.8%和143.6%~166.0%。水稻氮吸收高峰出现在穗分化期至抽穗期,此阶段SSNM处理氮的吸收量和其占最终总吸收量的比例均明显高于FFP。抽穗后SSNM水稻的吸氮量也明显高于FFP。自幼穗分化期开始,SSNM水稻根系重量和根系活力(尤其是单茎占有的根系活性)逐步超过FFP。SSNM 明显提高了幼穗分化期和抽穗期水稻叶片中谷氨酰胺合成酶、硝酸还原酶和Fd-谷氨酸合酶的活性。抽穗后SSNM处理水稻剑叶的光合速率高于FFP,上述结果表明SSNM有利于促进水稻中后期根系生长,提高物质生产和养分吸收,从而提高氮肥的利用效率。
[1] FAO. Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome. http://www.fao.org, 2007 [2] Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森). Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin (中国农业科学),2002, 35(9): 1095-1103(in Chinese with English abstract) [3] Zhu Z-L(朱兆良). Research progresses on the fate of soil N supply and applied fertilizer N in China. Soil (土壤), 1985, 17(1): 2-9(in Chinese) [4] Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site-specific nutrient management for irrigated rice in southeast China. Agron J, 2001, 93: 869-878 [5] Liu L-J(刘立军), Xu W(徐伟), Xu G-W(徐国伟), Zhou J-L(周家麟), Yang J-C(杨建昌).N-saving effect and its mechanism of site-specific nitrogen management in rice. Jiangsu J Agric Sci (江苏农业学报), 2005, 21(3): 155-161(in Chinese with English abstract) [6] Dobermann A, Witt C, Dawe D, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, Chien N V, Thoa V T K, Phung C V, Stalin P, Muthukrishna P, Ravi V, Babu M, Chatuporn S, Kongchum M, Sun Q, Fu R, Simbaha G C, Adviento M A A. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Res, 2002, 74: 37-66 [7] Dobermann A, Witt C. The evolution of site-specific nutrient management in irrigated rice systems of Asia. In: Dobermann A, Witt C, eds. Increasing Productivity of Intensive Rice Systems through Site-Specific Nutrient Management. Los Baños, Philippines: International Rice Research Institute, 2004. pp 75-100 [8] Peng S, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res, 1996, 47: 243-252 [9] Wang G-H(王光火), Zhang Q-C(张奇春), Huang C-Y(黄昌勇). SSNM-A new approach to increasing fertilizer N use efficiency and reducing N loss from rice fields. J Zhejiang Agric Univ (Agric Life Sci)(浙江大学学报·农业与生命科学版), 2003, 29(1): 67-70(in Chinese with English abstract) [10] Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Agric Sci China, 2004, 3(4): 262-268 [11] Liu L-J(刘立军), Xu W(徐伟), Sang D-Z(桑大志), Liu C-L(刘翠莲), Zhou J-L(周家麟), Yang J-C(杨建昌). Site-specific nitrogen management increases fertilizer-nitrogen use efficiency in Rice. Acta Agron Sin (作物学报), 2006, 32(7): 987-994 (in Chinese with English abstract) [12] Bremner J M, Mulvaney C S. Nitrogen-total. In: Page A L ed. Methods of Soil Analysis. Part 2. 2nd edn. Agron Monogr. 9. ASA and SSSA, Madison, WI. 1982. pp 595-624 [13] Zhang J-D(章骏德), Liu G-P(刘国屏), Shi Y-Y(施永永). Research Methods of Plant Physiology (植物生理研究法). Nanchang: Jiangxi People’s Publishing House, 1982. pp 52-57 (in Chinese) [14] Foyer C H, Valadier M H, Migge A, Thomas W B. Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol, 1998, 117: 283-292 [15] Hayakawa T, Yamaya T, Mae T, Ojima K. Changes in the content of two glutamate synthase proteins in spikelets of rice (Oryza sativa)plants during ripening. Plant Physiol, 1993, 101: 1257-1262 [16] Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72, 248-254 [17] Liu L-J(刘立军), Xu W(徐伟), Wu C-F(吴长付), Yang J-C(杨建昌). Characteristics of growth, development and nutrient uptake in rice under site-specific nitrogen management. Chin J Rice Sci (中国水稻科学), 2007, 21(2): 191-197 (in Chinese with English abstract) [18] Foyer C H, Noctor G, Lelandais M, Lescure J C, Valadier M H, Boutin J P, Horton P. Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Planta, 1994, 192: 211-220 [19] Miflin B J. Ammonia assimilation. In: Miflin B J ed. The Biochemistry of Plants: Amino Acids and Derivatives. New York: Academic Press, 1980. pp 169-202 [20] Sechley K A, Yamaya T, Oaks A. Compartment of nitrogen assimilation in higher plants. Int Rev Cytol, 1992, 134: 85-163 [21] Mo L-Y(莫良玉), Wu L-H(吴良欢), Tao Q-N(陶勤南). Effects of different nitrogen forms on rice seedlings under sterilized culture at high temperature. Plant Nutr Fert Sci (植物营养与肥料学报), 2002, 8(2): 157-161 (in Chinese with English abstract) [22] Husted S, Hebbern C A, Mattsson M, Schjoerring J K. A critical experimental evaluation of methods for determination of NH+4 in plant tissue, xylem sap and apoplastic fluid. Physiologia Plantarum, 2000, 109: 167-179 [23] Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Ann Rev Plant Physiol Plant Mol Biol, 1996, 47: 569-593 [24] Ling Q-H(凌启鸿), Zhang H-C(张洪程), Dai Q-G(戴其根), Ding Y-F(丁艳锋), Ling L(凌励), Su Z-F(苏祖芳), Xu M(徐茂), Que J-H(阙金华), Wang S-H(王绍华). Study on precise and quantitative N application in rice. Sci Agric Sin (中国农业科学), 2005, 38(12): 2457-2467 (in Chinese with English abstract) Ling Q-H(凌启鸿), Zhang H-C(张洪程), Ding Y-F(丁艳锋), Dai Q-G(戴其根), Ling L(凌励), Wang S-H(王绍华), Xu M(徐茂). Precise and quantitative cultivation for high yield in rice. North Rice (北方水稻), 2007, (2): 1-9 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
|