欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2015-2021.doi: 10.3724/SP.J.1006.2009.02015

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于基因重测序信息的大豆基因靶向CAPS标记开发

束永俊,李勇,柏锡,才华,纪巍,朱延明*   

  1. 东北农业大学生命科学学院,黑龙江哈尔滨 150030
  • 收稿日期:2009-03-26 修回日期:2009-05-05 出版日期:2009-11-12 网络出版日期:2009-08-07
  • 通讯作者: 朱延明, E-mail: ymzhu2001@yahoo.com.cn; Tel: 0451-55190734
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100104和2007AA10Z193)资助。

Development of Soybean Gene-Driven Functional CAPS Markers from the Genes'Re-Sequencing Information

SHU Yong-Jun,LI Yong,BAI Xi,CAI Hua,JI Wei,ZHU Yan-Ming*   

  1. College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
  • Received:2009-03-26 Revised:2009-05-05 Published:2009-11-12 Published online:2009-08-07
  • Contact: ZHU Yan-Ming, E-mail: ymzhu2001@yahoo.com.cn; Tel: 0451-55190734

摘要:

为了开发大豆基因靶向的功能分子标记,本研究采用生物信息学方法分析了大豆基因重测序数据,筛选出酶切位点突变的SNP位点,设计PCR引物163对,选用东北地区主栽品种绥农14DNA为模板进行PCR扩增,其中139对引物获得大小为400~1 200 bp的特异片段。以大豆绥农14、合丰25AcherEvansPekingPI209332、固新野生大豆、科丰1号和南农1138-2DNA为模板,采用筛选的139对引物进行PCR扩增,对扩增产物进行酶切分析,发现73对引物的PCR产物具有酶切多态性,开发出CAPS标记73个。通过功能注释分析发现,这73CAPS标记靶向的基因主要参与细胞内亚细胞定位过程、蛋白质的结合与催化以及代谢过程等,与大豆重要农艺性状的形成相关,可以用于大豆品种的鉴定和分子系统进化的研究。

关键词: 大豆, 重测序数据, 单核苷酸多态性, 酶切扩增多态性序列, 基因靶向功能标记

Abstract:

Soybean (Glycine max) is an important global crop and main source of oil and protein, so the research on economic traits of soybean is valuable. Single nucleotide polymorphism (SNP) has become important genetic markers according to its high density, co-dominance and so on. Gene-driven SNPs affecting traits relevant to host gene’s function are important type of molecular marker. Large numbers of re-sequencing data in database make it possible to easily develop SNP markers by bioinformatics technology. Cleaved amplified polymorphism sequence (CAPS) are also known as PCR-RFLP markers, provides a way to utilize the DNA sequences of mapped RFLP markers to develop PCR based markers thereby eliminating the tedious DNA blotting. The CAPS markers are co-dominant, locus specific, easily to use, lower cost and have been used to distinguish between plants that are homozygous or heterozygous for alleles. Thus, CAPS proves useful for genotyping, positional or map based cloning and molecular identification studies where sequence-based identification is not feasible. Many SNPs localize in restrict enzyme sites, so they could be identified with CAPS. A software was compiled and implemented, and the soybean genes’ re-sequencing data were analyzed by the bioinformatics method, and SNP sites which alter the restrict enzyme recognition sites were identified to develop the gene-deriven functional markers of soybean. Then 163 pair primers were designed to detect SNPs. 139 pair primersamplified single bands (400–1 200 bp) from genomic DNA of Suinong 14, which was widely planted in the Northeast China. To verify the SNP polymorphisms, we used these primer pairs for PCR amplification from genomic DNA of the nine soybean genotypes Suinong 14, Hefeng 25, Acher, Evans, Peking, PI209332, Guxin wild soybean, Kefeng 1 and Nannong 1138-2. The PCR amplicons were digested with different restriction endonucleases, 73 amplicons had polymorphism among the nine genotypes after digested, and 73 gene specific CAPS markers were developed. And then the functions of these genes, which these markers were driven by, were annotated by blast against the Arabidopsis proteins, and the soybean genes’ functions were grouped and analyzed. Result indicated that these genes participate in subcellular localization, protein binding or catalyzing, metabolic process and cell rescue, defense and disease resistance, etc. Most of these functions are relevant to important agronomic characters of soybean, so they have more possibility to be the ideal tools for marker-assisted breeding of soybean, and to be valuable for soybean genetic diversity analysis and molecular phylogeny analysis..The result means that these SNPs have more potential to be used in soybean breeding.

Key words: Soybean, Re-sequencing data, SNP, CAPS, Gene-driven functional marker

[1] Guan R-X(关荣霞), Guo J-J(郭娟娟), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). Marker-based evidence of broadening the genetic base of Chinese soybeans by using introduced soybeans. Acta Agron Sin (作物学报), 2007, 33(9): 1393-1398 (in Chinese with English abstract)

[2] Lu W-G(卢为国), Gai J-Y(盖钧镒), Zheng Y-Z(郑永战), Li W-D(李卫东). Construction of a soybean genetic linkage map and mapping QTLs resistant to soybean cyst nematode (Heterodera glycines Ichinohe). Acta Agron Sin (作物学报), 2006, 32(9): 1272-1279 (in Chinese with English abstract)

[3] Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999, 39: 1464-1490

[4] Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122-128

[5] Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G. Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome, 2006, 49: 1131-1139

[6] Alves D M, Pereira R W, Leal-Bertioli S C, Moretzsohn M C, Guimaraes P M, Bertioli D J. Development and use of single nucleotide polymorphism markers for candidate resistance genes in wild peanuts (Arachis spp). Genet Mol Res, 2008, 7: 631-642

[7] Weiland J J, Yu M H. A cleaved amplified polymorphic sequence (CAPS) marker associated with root-knot nematode resistance in sugarbeet. Crop Sci, 2003, 43: 1814-1818

[8] Spaniolas S, May S T, Bennett M J, Tuker G A. Authentication of coffee by means of PCR-RFLP analysis and lab-on-a chip capillary electrophoresis. J Agric Food Chem, 2006, 54: 7466-7470

[9] Palomino C, Fernández-Romero M, Rubio J, Torres A, Moreno M, Millán T. Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with
disease resistance. Theor Appl Genet, 2009, 118: 671-682
[1] Komori T, Nitta N. Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci, 2005, 55: 93-98

[10] Kong F(孔芳), Jiang J-J(蒋金金), Wu L(吴磊), Wang Y-P(王幼平). Relationships among genome A, B, and C revealed by FISH and CAPS. Acta Agron Sin (作物学报), 2008, 34(7): 1188-1192 (in Chinese with English abstract)

[11] Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single-nucleotide polymorphisms in soybean. Genetics, 2003, 163: 1123-1134

[12] Choi I Y, Hyten D L, Matukumalli L K, Song Q, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M S. A soybean transcript map: Gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176: 685

[13] Torjek O, Berger D, Meyer R C, Mussig C, Schmid K J, Rosleff Sorensen T, Weisshaar B, Mitchell-Olds T, Altmann T. Establishment of a high-efficiency SNP-based framework marker set for Arabidopsis. Plant J, 2003, 36: 122-140

[14] Komori T, Nitta N. Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci, 2005, 55: 93-98

[15] Kota R, Varshney R, Prasad M, Zhang H, Stein N, Graner A. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct & Integr Genom, 2008, 8: 223-233

[16] Rice P, Longden I, Bleasby A. EMBOSS: The european molecular biology open software suite. Trends Genet, 2000, 16: 276- 277

[17] Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol, 2000, 132: 365-386

[18] Nei M, Roychoudhury A K. Sampling variance of heterozygosity and genetic distance. Genetics, 1974, 76: 379-390

[19] Jeong S C, Saghai-Maroof M A. Detection and genotyping of SNPs tightly linked to two disease resistance loci, Rsv1 and Rsv3, of soybean. Plant Breed, 2004, 123: 305-310

[20] Yuan C-P(袁翠平), Li Y-H(李英慧), Liu Z-X(刘章雄), Guan R-X(关荣霞), Chang R-Z(常汝镇), Qiu L-J(邱丽娟). A method of SNP genotyping in soybean. Soybean Sci (大豆科学), 2007, 26(4): 447-459 (in Chinese with English abstract)

[21] Arnholdt-Schmitt B. Functional markers and a ‘systemic stra- tegy’: Convergency between plant breeding, plant nutrition and molecular biology. Plant Physiol Biochem, 2005, 43: 817-820
Bagge M, Xia X, Lubberstedt T. Functional markers in wheat. Curr Opin Plant Biol, 2007, 10: 211-216
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!