欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (12): 2139-2149.doi: 10.3724/SP.J.1006.2009.02139

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆蛋白质有关性状的QTL定位

刘顺湖1,4,周瑞宝2,*,喻德跃1,陈受宜3,盖钧镒1,*   

  1. 1南京农业大学大豆研究所/国家大豆改良中心/作物遗传与种质创新国家重点实验室,江苏南京210095;2河南工业大学大豆精深加工研究所,河南郑州450052;3中国科学院遗传与发育生物学研究所,北京100101;4山东济宁学院,山东曲阜273155
  • 收稿日期:2009-05-07 修回日期:2009-09-24 出版日期:2009-12-10 网络出版日期:2009-10-13
  • 通讯作者: 盖钧镒,E-mail: sri@njau.edu.cn; Tel: 025-84395405; 周瑞宝,E-mail: rbzhou0615@163.com
  • 基金资助:

    本研究由国家重点基础研究发展规划(973计划)项目(2004CB7206,2006CB101708,2009CB118404),国家自然科学基金项目(30671266),国家高新技术研究发展计划(863计划)项目(2006AA100104),教育部高等学校学科创新引智计划项目(B08025),农业部公益性行业专项(200803060)资助。

  QTL Mapping of Protein Related Traits in Soybean[Glycine max (L.) Merr.]

LIU Shun-Hu1,4,ZHOU Rui-Bao2,*, YU De-Yue1,CHEN Shou-Yi3,GAI Jun-Yi1,*   

  1. 1Soybean Research Institute of Nanjing Agricultural University,National Center for Soybean Improvement,and National Key Laboratory for Crop Genetics and Germplasm Enhancement,Nanjing 210095,China;2Soybean Processing Research Institute,Henan University of Technology,zhengzhou 450012,China,3Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101;4Shandong Jining College,Qufu 273155,China
  • Received:2009-05-07 Revised:2009-09-24 Published:2009-12-10 Published online:2009-10-13
  • Contact: GAI Jun-Yi,E-mail: sri@njau.edu.cn; Tel: 025-84395405;ZHOU Rui-Bao,E-mail: rbzhou0615@163.com

摘要:

科丰1×南农1138-2组合衍生的184个重组自交家系(简称RIKY)(Essex×ZDD2315)×ZDD2315衍生的114BC1F2家系(简称BIEX)为材料,对蛋白质含量、蛋油总量与油脂含量,11S7S11S/7S11S-1~11S-4, 7S-1~7S-6416个性状利用WinQTL Cartographer Ver.2.5的复合区间作图法(CIM)、多区间作图法(MIM)IciMapping Ver.2.0的完备区间作图法(ICIM)进行QTL分析, 结果表明:(1) RIKYBIEX群体分别定位到17+个和21+QTL,合计38+QTL;在RIKY有蛋白、油脂、蛋油总量QTL11个,在11S7S亚基组上分别只有1+3+个;在BIEX有前性状QTL2+个,有后性状QTL分别9+6+个;(2) 两群体16个性状上均没有检测到共享的QTL,说明两群体的蛋白质有关性状具有完全不同的遗传基础;RIKY的两个亲本间蛋白、油脂和蛋油总量有明显遗传差异,但在亚基组上遗传差异不大,而BIEX则反之;(3) 4组总、分性状中,两群体一致表现出蛋白、油脂和蛋油总量和11S7S11S/7S比值两组在总、分性状间共享QTL(共同遗传基础), 11S亚基组和7S亚基组两组性状在总、分性状间无共享的QTL(4) 蛋白质有关性状QTL定位结果和分离分析结果共同表明这类性状主效基因和微效基因均占较大比重,要考虑两者兼用的育种方法。

关键词: 大豆, 蛋白质含量, 蛋油总量, 11S, 7S, 11S/7S, 亚基组, QTL定位

Abstract:

Soybean processing industry places emphasis on the quality of soybean protein which is related to the protein components, mainly 11S, 7S and 11S/7S, and their subunit constituents. In the improvement of soybean protein quality, the knowledge of genetic structure of the traits related to protein quality is of great importance. Therefore, the present paper was aimed at mapping QTLs of 16 traits, including protein content, protein plus fat content, fat content, 11S, 7S, 11S/7S, and subunit groups. Two populations, RIKY population with 184 recombinant inbred lines derived from Kefeng 1×Nannong 1138-2 and BIEX population with 114 BC1F2 lines derived from (Essex×ZDD2315) ×ZDD2315, were used to map QTLs with the softwares of composite interval mapping (CIM), multiple interval mapping (MIM) of WinQTL Cartographer Ver. 2.5 and the inclusive composite interval mapping (ICIM) of IciMapping. The results showed that there were totally 17+ QTLs detected with 11 for protein content, fat content and total content of protein and fat, and 1+ and 3+ for 11S subunit groups and 7S subunit groups, respectively, in RIKY, as well as totally 21+ detected with only 2+ for protein content, fat content and protein plus fat content, but 9+ and 6+ for 11S subunit groups and 7S subunit groups, respectively, in BIEX. There was no shared QTL detected for all 16 traits in both populations, indicating that the 16 traits between RIKY and BIEX have completely different genetic systems, and there existed obvious genetic differences between two parents of RIKY in protein content, fat content and protein plus fat content but less genetic differences in 11S subunit groups and 7S subunit groups, and those of BIEX were on the contrary. The group of protein content, fat content and protein plus fat content and the group of 11S, 7S and 11S/7S had common QTLs, showing their common genetic base, but there were no common QTLs in the groups of 11S subunit and 7S subunit. The results from QTL mapping and segregation analysis showed jointly that both major genes and minor genes contributed a large part of phenotypic variations for all 16 traits, suggesting that both major genes and minor genes should be considered in the breeding for protein-related traits.

Key words: Soybean, Protein content, Protein plus fat content, 11S, 7S, 11S/7S, Subunit group, QTL mapping

[1] Diers B W, Shoemaker R C. Restriction fragment length polymorphismanalysis of soybean fatty acid content. JAOCS, 1992, 69: 1242-1244
[2] Chapman A, Pantalone V R, Ustun A. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387-393
[3] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561
[4] Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45: 2015-2022
[5] Zhu X-L(朱晓丽). Constructing of Genetic Linkage Map and QTL Mapping of Important Agronomic Traits in Two Soybean Populations. MS Dissertation of Northeast Agricultural University, 2006 (in Chinese with English abstract)
[6] Lü Z-Z(吕祝章). Construction of Soybean Genetic Map, QTL Mapping of Agronomic Traits, and Identification on Excellent Gene. PhD Dissertation of Shandong Agricultural University, 2006 (in Chinese with English abstract)
[7] Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M(邱红梅), Shan C-Y(单彩云). QTL analysis of major agronomic traits in soybean. Sci Agric Sin, 2007, 40(1): 41-47 (in Chinese with English abstract)
[8] Nielsen N C, Dickinson C D, Cho T J, Thanh V H, Scallon B J, Fischer R L, Sims T L,Drews G N, Goldberg R B. Characterization of the glycinin gene family. Plant Cell, 1989, 1: 313-328
[9] Chen Z, Shoemaker R C. Four genes affecting seed traits in soybean map to linkage group F. J Hered, 1998, 89: 211-215
[10] Beilinson V, Chen Z, Shoemaker R C, Fischer R L, Goldberg R B, Nielsen N C. Genomic organization of glycinin genes in soybean. Theor Appl Genet, 2002, 104: 1132-1140
[11] Panthee D R, Kwanyuen P, Sams C E, West D R, Saxton A M, Pantalone V R. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am Oil Chem Soc, 2004, 81: 1558-9331
[12] Liu S H, Zhou R B, Tian S J, Gai J Y. A Study on subunit groups of soybean protein extracts under SDS-PAGE. J Am Oil Chem Soc, 2007, 84: 793-801
[13] Wang S C, Basten C J, Zeng Z B. Cartographer Ver.2.5.
[2005]
[2009] http://statgen.ncsu.edu/ qtlcart/WQTLCart.htm

[14] Li H H, Ye G Y, Wang J K. A modi?ed algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374

[15] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994, 138: 963-971

[16] Doerge R W, Churchill G A. Permutation tests for multiple loci affecting a quantitative character. Genetics, 1996, 142: 285-294

[17] Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K. An introduction to markers, quantitative trait loci (QTL) mapping and marker assisted selection for crop improvement: The basic concepts. Euphytica, 2005, 142: 169-196

[18] Liu S-H(刘顺湖), Zhou R-B(周瑞宝), Gai J-Y(盖钧镒). Segregation Analysis for Inheritance of Protein Related Traits in Soybean
[Glycine max (L.) Merr.]. Acta Agron Sin (作物学报), 2009, 35(11)(in press) (in Chinese with English abstract)

[19] Liu Y(刘莹). Identification of tolerance to rhizosperical stresses and inheritance and QTL locating of related root traits in soybean
[Glycine max (L) Merr.]. PhD Dissertation of Nanjing Agricultural University, 2005

[20] Luo W-G(卢为国). Soybean Cyst Nematode (Heterodera glycines Ichinohe) Races and Inheritance and Gene Mapping of Resistance of Soybean to the Disease in Huang-Huai Valley. PhD Dissertation of Nanjing Agricultural University, 2005(in Chinese with English abstract)
[21] Zheng Y-Z(郑永战). Variability, Inheritance, and QTL Mapping of Fatty Traits in Chinese Germplasm of Soybean. PhD Dissertation of Nanjing Agricultural University, 2006 (in Chinese with English abstract)
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!