欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 840-847.doi: 10.3724/SP.J.1006.2010.00840

• 耕作栽培·生理生化 • 上一篇    下一篇

利用SPAD和Dualex快速、无损诊断玉米氮素营养状况

鱼欢1,2,邬华松1,3,王之杰2   

  1. 1中国热带农业科学院香料饮料研究所,海南万宁571533;2加拿大农业与农业食品部园艺研究与发展中心,St-Jean-sur-Richelieu,Canada,J3B3E6;3中国热带农业科学院国家重要热带作物工程技术研究中心,海南儋州571737
  • 收稿日期:2009-10-20 修回日期:2010-02-06 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 基金资助:

    本研究由加拿大农业与农业食品部(Agriculture and Agri-Food Canada)、加拿大肥料公司(Agrium company)和国家科技支撑计划项目(2007BAD48B06-7)资助。

Evaluation of SPAD and Dualex for In-Season Corn Nitrogen Status Estimation

YU Huan1,2,WU Hua-Song1,3,WANG Zhi-Jie2   

  1. 1 Spice and Beverage Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; 2 Horticulture Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, J3B3E6, Quebec, Canada; 3 National Centre of Important Tropical Crops Engineering and Technology Research, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
  • Received:2009-10-20 Revised:2010-02-06 Published:2010-05-12 Published online:2010-03-15

摘要:

为了探讨玉米生长过程中适宜的施氮量,以加拿大玉米品种Pioneer 38B84为试验材料,在底施氮为45 kg hm-2和基本苗7.9万株 hm-2条件下,研究追氮量0、34、68、101、135、169和203 kg hm-2以及氮饱和参考小区等8个处理对吐丝后玉米穗位叶SPAD值、Dualex值、地上部生物量及产量的影响。结果表明,SPAD值、地上部生物量以及产量均随追氮量增加而增加,Dualex值随追氮量增加而降低。追氮101、135、169和203 kg hm-2处理的SPAD-氮饱和指数(SPAD-NSI)在各测定日期均大于0.95。追氮101 kg hm-2处理的Dualex-NSI在吐丝后18~46 d大于0.95;追氮135、169和203 kg hm-2各处理的Dualex-NSI在各测定日期均大于0.95。SPAD 值、Dualex 值、SPAD-NSI和Dulaex-NSI均与追氮量显著相关。在拔节期追氮101 kg hm-2 或135 kg hm-2即可满足玉米生长对氮素的需求,获得最大的经济产量。当超过最大产量施肥量时,氮肥用量的增加对SPAD值、Dualex值、地上部生物量以及产量均无显著影响。追肥不仅可达到与氮饱和参考小区同样的产量效果,而且还可减少氮肥的施用量,减少种植者的经济投入。在本试验条件下,基施氮45 kg hm-2,在拔节期适宜的追氮量为101 kg hm-2或135 kg hm-2。SPAD叶绿素仪与Dualex仪均可用来诊断玉米的氮素营养状况。

关键词: 追施氮肥量, 玉米, SPAD值, Dualex值, 产量

Abstract:

Nitrogen (N) is one of the most important nutrients influencing both yield and grain quality, and N supply is one of the few production factors that can be controlled and which is known to effectively influence crop performance. Both SPAD reading and Dualex reading are shown to be highly correlated with leaf N concentration, and crop N status can be assessed through the SPAD reading and Dualex reading. The purpose of this study was to evaluate the suitable N rate at topdressing time. In order to evaluate the N application rates on SPAD reading and Dualex reading of corn after silking, corn field experiment was conducted with application of 45 kg N ha-1 at sowing and planting density of 79 000 plants ha-1 in 2008 on the L’Acadie experimental farm (Quebec, Canada). Topdressing N was performed with 0, 34, 68, 101, 135, 169 and 203 kg N ha-1 at jointing stage. N-saturated reference plots with topdressing of 180 kg N ha-1 at 10 days after sowing, besides 45 kg N ha-1 at sowing, was established. With increasing topdressing N rates, SPAD reading, aboveground dry biomass and corn grain yield increased, and Dualex reading decreased. The SPAD-NSI of topdressing N treatments with 101, 135, 169 and 203 kg N ha-1 was always higher than 0.95 at all samplings dates. The Dualex-NSI of topdressing N treatments with 101 kg N ha-1 was higher than 0.95 from 18 d to 46 d; the Dualex-NSI of topdressing N treatments with 135, 169 and 203 kg N ha-1 was also higher than 0.95 at all samplings dates. SPAD reading, Dualex reading, SPAD-NSI and Dualex-NSI were strongly correlated with topdressing N rates. The maximum yield was reached when topdressing N was 101 or 135 kg N ha-1 at jointing stage. When maximum yield was reached, any additional N was no significant effect on SPAD reading, Dualex reading, aboveground dry biomass and corn grain yield. Topdressing N rate of 101 or 135 kg N ha-1 was enough for corn growth after silking and getting maximum grain yield. There was no significant difference between splitting the N into two applications and N-saturated application on grain yield; however, splitting the N into two applications significantly decreased the total N application rate and growers’ inputs. In the present study, the suitable topdressing N rate was 101 or 135 kg N ha-1 with 45 kg N ha-1 at sowing. SPAD and Dualex could be integrated to evaluate in-season N status of corn.

Key words: Topdressing N application rates, Corn, SPAD reading, Dualex reading, Corn grain yield


[1]     Elia A, Santamaria P, Serio F. Nitrogen nutrition, yield and quality of spinach. J Sci Food Agric, 1988,76: 341–346


[2]     Samonte S O P B, Wilson L T, Medley J C, Pinson S R M, McClung A M, Lales J S. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agron J,2006, 98: 168–176


[3]     Ferguson R B, Hergert G W, Schepers J S, Gotway C A, Cahoon J E, Peterson T A. Site-specific nitrogen management of irrigated maize: Yield and soil residual nitrate effects. Soil Sci Soc Am J,2002, 66: 544–553


[4]     Arora Y, Juo A S R. Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rainfall tropics: Leaching of nitrate in field plots under cropping and bare fallow. ,1982, 46: 1212–1218Soil Sci Soc Am J


[5]     Randall G W, Vetsch J A, Huffman J R. Corn production on a subsurface-drained mollisol as affected by time of nitrogen application and nitrapyrin. Agron J, 2003, 95: 1213–1219


[6]     Fox R H, Kern J M, Piekielek W P. Nitrogen fertilizer source, and method and time of application effects on no-till corn yields and nitrogen uptake. Agron J, 1986, 78: 741–746


[7]     Russelle M P, Deibert E J, Hauck R D, Stevanovic M, Olson R A. Effects of water and nitrogen management on yield and 15N-depleted fertilizer use efficiency of irrigated corn. Soil Sci Soc Am J, 1981, 45: 553–558


[8]     Welch L F, Mulvaney D L, Oldham M G, Boone L V, Pendleton J W. Corn yields with fall, spring, and sidedress nitrogen. Agron J, 1971, 63: 119–123


[9]     Wood C W, Reeves D W, Duffield R R, Edmisten K L. Field chlorophyll measurements for evaluation of corn nitrogen status. J Plant Nutr,1992, 15: 487–500


[10] Arregui L M, Lasa B, Lafarga A, Iranneta I, Baroja E, Quemada M. Evaluation of chlorophyll meters as tools for N fertilization in winter wheat under humid Mediterranean conditions. Eur J Agron,2006, 24: 140–148


[11] Turner F T, Jund M F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron J, 1991, 83: 926–928


[12] Varvel G E, Schepers J S, Francis D D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters. Soil Sci Soc Am J,1997, 6: 1233–1239


[13] Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Commun Soil Sci Plan,1992,23: 2173–2187


[14] Hussain F, Bronson K F, Yadvinder S, Bijay S, Peng S. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron J, 2000, 92: 875–879


[15] Blackmer T M, Schepers J S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J Prod Agric,1995, 8: 56–60


[16] Tremblay N, Bélec C. Adapting nitrogen fertilization to unpredictable seasonal conditions with the least impact on-the environment. Horttechnology,2006, 16: 408–412


[17] Shapiro C A. Using a chlorophyll meter to manage nitrogen applications to corn with high nitrate irrigation water. Commun Soil Sci Plan, 1999, 30: 1037–1049


[18] Caldwell M M, Gold W G, Harris G, Ashurst C W. A modulated lamp system for solar UV-B (280–320 nm) supplementation studies in the field. Photochem Photobiol,1983, 37: 479–485


[19] Cerovic Z G, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I. The use of chlorophyll fluorescence excitation spectra for the non-destructive in situassessment of UV-absorbing compounds in leaves. Plant Cell Environ, 2002, 25: 1663–1676


[20] Cartelat A, Cerovic Z G, Goulas Y, Meyer S, Lelarge C, Prioul J L, Barbottin A, Jeuffroy M H, Gata P, Agati G, Moya I. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Res,2005, 91: 35–49


[21] Goulas Y, Cerovic Z G, Cartelat A, Moya I. Dualex: a new instrument for field measurements of epidermal UV-absorbance by chlorophyll fluorescence. Appl Optics, 2004, 43: 4488–4496


[22] Tremblay N, Wang Z J, Bélec C. Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr, 2007, 30: 1355–1369


[23] Delgado J A, Ristau R J, Dillon M A, Duke H R, Stuebe A, Follett R F, Shaffer M J, Riggenbach R R, Sparks R T, Thompson A, Kawanabe L M, Kunugi A, Thompson K. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations. Commun Soil Sci Plan, 2001, 32: 1321–1354


[24] Ma B L, Dwyer L M, Gregorich E G. Soil N amendment, effects on seasonal N mineralization and N cycling in maize production. Agron J, 1999, 91: 1003–1009
Jia L-L(贾良良), Chen X-P(陈新平), Zhang F-S(张福锁). Non-destructive measurement of crop nitrogen nutrition diagnosis. World Agric (世界农业), 2001, (6): 36–37 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[7] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[8] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[9] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[13] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!