欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1674-1682.doi: 10.3724/SP.J.1006.2010.01674

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆百粒重QTL定位

汪霞,徐宇,李广军,李河南,艮文全,章元明*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室 / 国家大豆改良中心,江苏南京 210095
  • 收稿日期:2010-03-25 修回日期:2010-07-05 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 章元明,E-mail: soyzhang@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30971848),江苏省自然科学基金项目(BK2008335),教育部新世纪优秀人才支持计划项目(NECT-05-0489),高等学校博士点基金项目(20060307008)和教育部“111”计划(B08025)资助。

Mapping Quantitative Trait Loci for 100-Seed Weight in Soybean (Glycine max L. Merr.)

WANG Xia,XU Yu,LI Guang-Jun,LI He-Nan,GEN Wen-Quan,ZHANG Yuan-Ming*   

  1. National Key Laboratory of Crop Genetics and Germplasm enhancement/National Center for Soybean Improvement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2010-03-25 Revised:2010-07-05 Published:2010-10-12 Published online:2010-08-04
  • Contact: ZHANG Yuan-ming,E-mail: soyzhang@njau.edu.cn

摘要: 大豆百粒重是产量构成的重要因素之一,与产量呈正相关。本研究以溧水中子黄豆和南农493-1的504个F2正反交单株及其亲本间具有多态性的150个SSR标记信息构建连锁图谱,2008年分别在江苏南京和山东临沂两地种植其衍生的正反交F2:4家系,鉴定其百粒重,应用Win QTL Cartographer V. 2.5复合区间作图法和两地正反交联合分析进行QTL定位。结果表明, 复合区间作图法检测到16个主效QTL,联合分析检测到24个主效QTL、环境效应与细胞质效应、1个环境×QTL互作和12个细胞质×QTL互作。其中,两方法共同检测到10个主效QTL,正反交群体在两地中共同检测到3个主效QTL;Meta分析发现与其他研究一致的4个QTL。这些结果为大豆产量遗传与标记辅助育种实践提供理论基础。

关键词: 大豆, 百粒重, 数量性状基因座, 多标记联合分析, 质核互作, Meta分析

Abstract: 100-seed weight is an important yield component of soybean and has been positively correlated with seed yield. A genetic linkage map using 504 F2 plants from direct and reciprocal crosses between Lishuizhongzihuang and Nannong 493-1 was constructed. 100-seed weight for these F2:4 families were measured at Jiangpu experimental station of Nanjing Agricultural University and Linyi experimental station in 2008, respectively. The above information was used to detect quantitative trait locus (QTL) for 100-seed weight using composite interval mapping (CIM) in Win QTL Cartographer V. 2.5 and joint analysis under the framework of penalized maximum likelihood. The results showed that sixteen QTLs were identified by the CIM while thirty-nine QTLs, including twenty-four main-effect QTLs, one environmental effect, one cytoplasmic effect, one environmental interaction and twelve cytoplasmic interactions, were detected by joint analysis. Ten common main-effect QTLs detected by the above two methods, three common QTLs between direct and reciprocal crosses at the two environments, and four consensus QTLs from Meta analysis showed the stability of the results. These results provide a theoretical basis for genetic analysis of soybean yield and marker-assisted breeding.

Key words: Soybean, 100-seed weight, Quantitative trait loci, Multi-marker joint analysis, Cytoplasmic interaction, Meta analysis

[1]Maughan P J, Saghai Maroof M A, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574–579
[2]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651
[3]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott J W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016
[4]Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131–1139
[5]Wu X-L(吴晓雷), Wang Y-J(王永军), He C-Y(贺超英), Chen S-Y(陈受宜), Gai J-Y(盖钧镒), Wang X-C(王学臣). QTL analysis of major agronomic traits in soybean. Acta Genet Sin (遗传学报), 2001, 28(10): 947–955 (in Chinese with English abstract)
[6]Reinprecht Y, Poysa V W, Yu K, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max L. Merr.) germplasm. Genome, 2006, 49: 1510–1527
[7]Huang Z-W(黄中文), Zhao T-J(赵团结), Yu D-Y(喻德跃), Chen S-Y(陈受宜), Gai J-Y(盖钧镒). Detection of QTLs of yield related traits in soybean. Sci Agric Sin (中国农业科学), 2009, 42(12): 4155–4165 (in Chinese with English abstract)
[8]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457–1468
[9]Zhang Y M, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL. Heredity, 95: 96-104
[10]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128
[11]Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribisomal DNA space-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[12]Van Ooijen J W. JoinMap 4, Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Netherlands, Kyazma, B.V. 2006
[13]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer V.2.5. Department of Statistics. Raleigh, NC: North Carolina State Univesity, 2007
[14]Voorrips R E. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[15]McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89–99
[16]Shen J-B(申建斌), Jiang C-S(蒋昌顺). Application and limiting factors and improvement of crop QTL mapping. Chin Trop Agric (热带农业科学), 2006, 26(4): 59–63 (in Chinese with English abstract)
[17]Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571–581
[18]Wang X-Z(王贤智), Zhou R(周蓉), Shan Z-H(单志慧), Zhang X-J(张晓娟), Sha A-H(沙爱华), Chen H-F(陈海峰), Qiu D-Z(邱德珍), Zhou X-A(周新安). Mapping QTLs associated with yield and yield components under different growing density in soybean RIL population. Chin J Oil Crop Sci (中国油料作物学报), 2009, 31: 1–8 (in Chinese with English abstract)
[19]Chen Q-S(陈庆山), Zhang Z-C(张忠臣), Liu C-Y(刘春燕), Xin D-W(辛大伟), Shan D-P(单大鹏), Qiu H-M(邱红梅), Shan C-Y(单彩云). QTL analysis of major agronomic traits in soybean. Sci Agric Sin (中国农业科学), 2007, 6(4): 399–405 (in Chinese with English abstract)
[20]Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E Jr, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011–1016
[21]Maughan P J, Saghai-Maroof M A, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574–579
[22]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl Genet, 2001, 103: 702–709
[23]Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129: 387–393
[24]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552–561
[25]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74
[26]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509
[27]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642–1651
[28]Csanádi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet, 2001, 103: 912–919
[29]Stombaugh S K, Orf J H, Jung H G, Chase K, Lark K G, Somers D A. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci, 2004, 44: 2101–2106
[30]Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J. Biomercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics, 2004, 20: 2324–2326
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!