欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 612-619.doi: 10.3724/SP.J.1006.2011.00612

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

拟南芥bZIP1转录因子通过与ABRE元件结合调节ABA信号传导

孙晓丽,李勇,才华,柏锡,纪巍,季佐军,朱延明*   

  1. 东北农业大学生命科学学院植物生物工程研究室, 黑龙江哈尔滨150030
  • 收稿日期:2010-06-25 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 朱延明, E-mail: ymzhu2001@neau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30570990), 国家转基因生物新品种培育重大专项(20082x08004), 黑龙江省重大科技攻关项目(GA06B103)和东北农业大学创新团队(CXT004)资助。

Arabidopsis bZIP1 Transcription Factor Binding to the ABRE Cis-Element Regulates Abscisic Acid Signal Transduction

SUN Xiao-Li,Li Yong,CAI Hua,BAI Xi,JI Wei,JI Zuo-Jun,ZHU Yan-Ming*   

  1. Plant Bioengineering Laboratory, College of Life Science, Northeast Agriculture University, Haerbin 150030, China
  • Received:2010-06-25 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 朱延明, E-mail: ymzhu2001@neau.edu.cn

摘要: ABA作为一种重要的植物激素和生长调节剂,介导了高等植物在营养生长阶段对各种外界环境的响应和适应。bZIP类转录因子可以通过ABA依赖途径和ABA非依赖途径调节植物的生长发育和对非生物胁迫的耐性。本研究通过AtbZIP1 T-DNA插入突变的拟南芥植株ko-1 (SALK_059343)和ko-2 (SALK_069489C)在ABA处理后的表型实验,验证了AtbZIP1参与ABA依赖的信号传导通路。采用“三引物法”,分别在DNA水平和RNA水平通过PCR和RT-PCR验证了AtbZIP1基因在拟南芥突变体中的沉默效果。定量分析数据表明,在种子萌发阶段,经过0.6 μmol L–1 ABA和0.8 μmol L–1 ABA处理后,AtbZIP1缺失突变体拟南芥植株萌发率和叶片展开/绿色率比野生型植株高,在幼苗生长阶段,经过50 μmol L–1 ABA处理后,AtbZIP1缺失突变体拟南芥植株根长比野生型植株长。为了确定AtbZIP1基因参与ABA信号传导是否依赖于ABRE元件,在大肠杆菌中表达了AtbZIP1 HIS6融合蛋白,并设计了核心序列为CACGTG的ABRE元件。凝胶阻滞电泳结果表明AtbZIP1融合蛋白可以与ABRE元件特异性结合。半定量RT-PCR分析表明,AtbZIP1基因的缺失改变了下游的ABA响应基因的表达。该结果表明AtbZIP1可以通过与ABRE元件结合调节植物对ABA处理的敏感性和下游ABA响应基因的表达,从而参与植物的ABA信号传导通路。

关键词: bZIP, 转录因子, ABA信号传导, ABRE元件, ABA响应基因

Abstract: Abscisic acid (ABA) is a phytohormone and mediates the response and adaptation of higher plants to various environmental stresses during vegetative growth. The basic leucine zipper (bZIP) transcription factors are also important regulators of plant development and abiotic resistance, acting through either ABA-dependent or ABA-independent mechanisms. In this study, we investigated and characterized the involvement of the AtbZIP1 gene in plant responsiveness to ABA. As confirmed by PCR and RT-PCR, AtbZIP1 has been silenced in mutant Arabidopsis ko-1 (SALK_059343) and ko-2 (SALK_069489C). The AtbZIP1 knockout plants demonstrated reduced sensitivity to ABA both at the seed germination stage and the seedling stage, with improvements in rates of germination, leaf opening/greening and primary root length. In order to investigate whether the regulation of AtbZIP1-mediated ABA responsiveness depended on the ABA-responsive elements (ABRE), we expressed the AtbZIP1 HIS6 fusion protein in E. coli andfound that the AtbZIP1 HIS6 specifically bound to the ABRE cis-elements. Semi-quantitive RT PCR showed that AtbZIP1 disruption altered expressions of some ABA responsive genes such as NCED3, RD22, KIN1, and RD29A. Our results indicated that AtbZIP1 regulates abscisic acid signal transduction by binding to the ABREs and altered the expressions of the ABA responsive genes.

Key words: AtbZIP1, Transcription factor, ABA signal transduction, ABRE, ABA responsive genes

[1]Leung J, Giraudat. Abscisic acid signal transduction. J Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 199–222
[2]Busk P K, Pagès M. Regulation of abscisic acid-induced transcription. Plant Mol Biol, 1998, 37: 425–435
[3]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotech, 1996, 7: 161–167
[4]Thomashow M F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 1998, 118: 1–7
[5]Verslues P E, Zhu J K. Before and beyond ABA: Upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem Soc Trans, 2005, 33: 375–379
[6]Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 2: 48–54
[7]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev. Plant Physiol. Plant Mol Biol, 2002, 53: 247–273
[8]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227
[9]Uno Y, Furuhata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637
[10]Choi H, Hong J, Ha J, Kang J, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 275: 1723–1730
[11]Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinosaki K, Yamaguchi-Shinosaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488
[12]Lu G, Gao C, Zheng X, Han B. Identi?cation of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 2009, 229: 605–615
[13]Kobayashi F, Maeta E, Terashima A, Takumi S. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plantarum, 2008, 134: 74–86
[14]Casaretto J A, Ho T H. The transcription factors HvABI5 and HvVP1 are required for the ABA induction of gene expression in barley aleurone cells. Plant Cell, 2003, 15: 271–284
[15]Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347–363
[16]Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Wang X, Schutze K, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Droge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: Availability of heterodimerization partners controls gene expression during stress response and development. Plant Mol Biol, 2008, 69: 107–119
[17]Kang S G, Price J, Lin P C, Hong J C, Jang J C. The Arabidopsis bZIP1 transcription factor is invovled in sugar signaling, protein networking, and DNA binding. Mol Plant, 2010, 3: 361–373
[18]Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136: 2621–2632
[19]Guo J-P(郭金平), Pan D-R(潘大仁). PCR detection of nematode resistance in sweet potato. Acta Agron Sin (作物学报), 2002, 28: 167–169 (in Chinese with English abstract)
[20]Ardie S W, Xie L, Takahashi R, Liu S, Takano T. Cloning of a high-affinity K+ transporter gene PutHKT2; 1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot, 2009, 60: 3491–3502
[21]Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, and Shinozaki K. Monitoring the Expression pattern of 1300 Arabidopsis genes under drought and cold Stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61–72
[22]Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in Rice. Plant Physiol, 2008, 148: 1938–1952
[23]Yang O, Popova O V, Suthoff U, Luking I, Dietz K J, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene, 2009, 436: 45–55
[24]Izawa T, Foster R, Chua N H. Plant bZIP protein DNA binding specificity. J Mol Biol, 1993, 230: 1131–1144
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[3] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[4] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813.
[5] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[6] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[7] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[8] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
[9] 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627.
[10] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[11] 朱莹, 褚姗姗, 张培培, 程浩, 喻德跃, 王娇. R2R3-MYB转录因子GmMYB184调节大豆异黄酮合成[J]. 作物学报, 2018, 44(02): 185-196.
[12] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[13] 赵立娜.段硕楠.张华宁.郭秀林.李国良. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析[J]. 作物学报, 2017, 43(07): 1021-1029.
[14] 刘会云,王婉晴,李欣,王轲,王龙,杜丽璞,晏月明,叶兴国. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响[J]. 作物学报, 2017, 43(05): 691-700.
[15] 彭振,何守朴,龚文芳,潘兆娥,贾银华,卢艳丽,杜雄明. 陆地棉幼苗NaCl胁迫下转录因子表达的转录组学分析[J]. 作物学报, 2017, 43(03): 354-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!