欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1372-1377.doi: 10.3724/SP.J.1006.2011.01372

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

外源ABA对干旱胁迫下不同品种灌浆期小麦psbA基因表达的影响

汪月霞1,索标2,赵腾飞1,曲晓菲1,袁利刚1,赵雪娟1,赵会杰1,*   

  1. 1 河南农业大学生命科学学院,河南郑州 450002; 2 河南农业大学食品科学技术学院,河南郑州 450002
  • 收稿日期:2011-02-28 修回日期:2011-04-26 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 赵会杰, E-mail: zhaohj303@163.com, Tel: 0371-63555319
  • 基金资助:

    本研究由国家自然科学基金项目(30971725和31000688)资助。

Effect of Abscisic Acid Treatment on psbA Gene Expression in Two Wheat Cultivars during Grain Filling Stage under Drought Stress

WANG Yue-Xia1,SUO Biao2,ZHAO Teng-Fei1,QU Xiao-Fei1,YUAN Li-Gang1,ZHAO Xue-Juan1,ZHAO Hui-Jie1,*   

  1. 1 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; 2 College of Food Science & Technology, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2011-02-28 Revised:2011-04-26 Published:2011-08-12 Published online:2011-06-13
  • Contact: 赵会杰, E-mail: zhaohj303@163.com, Tel: 0371-63555319

摘要: 脱落酸(abscisic acid, ABA)是一种重要的植物激素,与作物的抗干旱胁迫密切相关。本试验以灌浆期的豫麦949和陕麦5号小麦品种为试材,PEG干旱处理72 h后,比较了脱落酸对小麦相对水分含量、叶绿素、丙二醛含量以及产量的影响,并采用反转录半定量PCR方法测定PSII中psbA基因转录水平的变化。结果表明,干旱胁迫明显降低小麦叶片中相对水分和叶绿素含量,增加丙二醛含量,抑制psbA基因的转录,降低小麦的产量,而外源脱落酸能明显缓解这些胁迫反应。与豫麦949相比,陕麦5号中质膜损伤较小,相对水分和叶绿素含量、产量以及psbA基因转录水平的下降也较小,外源脱落酸处理后,各参数也能够恢复到对照水平,说明不同小麦品种的抗干旱胁迫能力与psbA基因的表达水平密切相关。本试验的研究结果也首次发现了外源ABA能够调控干旱胁迫下灌浆期小麦psbA基因的表达,稳定PSII系统中重要基因的转录水平,从而提高灌浆期小麦的抗干旱胁迫能力。

关键词: 小麦, 脱落酸, 灌浆期, psbA基因转录, 干旱胁迫

Abstract: Abscisic acid (ABA) is an important plant hormone and may be involved in drought resistance in crops. The effects of exogenous ABA application on wheat plant (Triticum aestivum L.) under drought stress were investigated. When two wheat cultivars, Yumai 949 and Shanmai 5 in grain filling stage were drought stressed by PEG for 72 h, the results showed a marked decrease in relative water contents (RWC), chlorophyll contents and yield, along with a significant increase in MDA content. Meanwhile, an obvious transcriptional inhibition in psbA gene of photosystem II (PSII) system after PEG exposure was also determined by reverse transcriptional semiquantitative polymerase chain amplification assay. The exogenous ABA treatment could significantly alleviate the stress injury. Moreover, compared to Yumai 949, Shanmai 5 had less destroyed plasma membranes, less reduces in RWC, chlorophyll contents, yield and psbA transcriptional level, and all parameters could be restored to the level of control by exogenous ABA treatment, suggesting a correlationship between cultivar dependent drought stress resistance and psbA gene expression. The present results firstly provide some evidences to the important regulatory function of exogenous ABA on psbA expression, and proposed that the application of exogenous ABA could enhance the stress resistance of wheat plant in grain filling stage by protecting important gene transcription in PSII system.

Key words: Triticum aestivum L., Abscisic acid, Grain filling stage, psbA gene expression, Drought stress

[1]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2004, 55: 2365–2384
[2]He J, An L, Lin H, Liang H. Evidence for transcriptional and post-transcriptional control of protein synthesis in water-stressed wheat leaves: a quantitative analysis of messenger and ribosomal RNA. J Plant Physiol, 1999, 155: 63–69
[3]Pandey D M, Yeo U D. Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plant, 2008, 52: 291–298
[4]Leucci M R, Lenucci M S, Piro G, Dalessandro G. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol, 2008, 165: 1168–1180
[5]Liu W J, Yuan S, Zhang N H, Lei T, Duan H G, Liang H G, Lin H H. Effect of water stress on photosystem 2 in two wheat cultivars. Biol Plant, 2006, 50: 597–602
[6]Selote D S, Khanna-Chopra R. Antioxidant response of wheat roots to drought acclimation. Protoplasma, 2010, 245: 153-163
[7]Yamamoto Y. Quality control of photosystem II. Plant Cell Physiol, 2001, 42: 121–128
[8]Travaglia C, Cohen A C, Reinoso H, Castillo C, Bottini R. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction. J Plant Growth Regul, 2007, 26: 285–289
[9]Xue-Xuan X, Hong-Bo S, Yuan-Yuan M, Gang X, Jun-Na S, Dong-Gang G, Cheng-Jiang R. Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. Crit Rev Biotechnol, 2010, 30: 222–230
[10]Nayyar H, Kaushal S K. Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biol Plant, 2002, 45: 65–70
[11]Travaglia C, Reinoso H, Cohen A, Luna C, Tommasino E, Castillo C, Bottini R. Exogenous ABA increases yield in field-grown wheat with moderate water restriction. J Plant Growth Regul, 2010, 29: 366–374
[12]Vaseva I I, Grigorova B S, Simova-Stoilova L P, Demirevska K N, Feller U. Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol, 2010, 12: 698–707
[13]Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U. Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticum aestivum L.) varieties subjected to long-term field drought. Plant Growth Regul, 2009, 58: 107–117
[14]Sangtarash M H. Responses of different wheat genotypes to drought stress applied at different growth stages. Pak J Biol Sci, 2010, 13: 114-119
[15]Madani A, Rad A S, Pazoki A, Nourmohammadi G, Zarghami R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source:sink modifications under postanthesis water and nitrogen deficiency. Acta Sci Agron, 2010, 32: 145–151
[16]Wei T-M(魏添梅), Chang X-P(昌小平), Min D-H(闵东红), Jing R-L(景蕊莲). Analysis of genetic diversity and trapping elite alleles for plant height in drought-tolerant wheat cultivars. Acta Agron Sin (作物学报), 2010, 36(6): 895–904 (in Chinese with English abstract)
[17]Schonfeld M, Johnson R, Carver B, Mornhinweg D. Water relations in winter wheat as drought resistant indicators. Crop Sci, 1988, 28: 526–531
[18]Phan C, Letouze R. A comparative study of chlorophyll, phenolic and protein contents, and of hydroxycinnamate: CoA ligase activity of normal and ‘vitreous’ plants (Prunus avium L.) obtained in vitro. Plant Sci Lett, 1983, 31: 323–327
[19]Wang Y X, Sun G R, Suo B, Chen G, Wang J B, Yan Y. Effects of Na2CO3 and NaCl stresses on the antioxidant enzymes of chloroplasts and chlorophyll fluorescence parameters of leaves of Puccinellia tenuiflora (Turcz.) Scribn.et Merr. Acta Physiol Plant, 2008, 30: 143–150
[20]Xuan W, Huang L, Li M, Huang B, Xu S, Liu H, Gao Y, Shen W. Induction of growth elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants? Plant Growth Regul, 2007, 52: 41-51
[21]Hsiao T. Plant responses to water stress. Annu Rev Plant Physiol, 1973, 24: 519–570
[22]Sharma P K, Singhal G S. Effect of water stress on primary photosynthetic processes: interaction with light and temperature. Indian J Biochem Biophys, 1993; 30: 10–14
[23]Wang G P, Hui Z, Li F, Zhao M R, Zhang J, Wang W. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol Rep, 2010, 4: 213–222
[24]Yuan S, Liu W J, Zhang N H, Wang M B, Liang H G, Lin H H. Effects of water stress on major photosystem II gene expression and protein metabolism in barley leaves. Physiol Plant, 2005, 125: 464–473
[25]Edelman M, Mattoo A K. D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res, 2008, 98: 609–620
[26]Mulo P, Sicora C, Aro E M. Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis. Cell Mol Life Sci, 2009, 66: 3697–3710
[27]Zhang J H, Jia W S, Yang J C, Ismail A M. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res, 2006, 97: 111–119
[28]Huang D Q, Wu W R, Abrams S R, Cutler A J. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot, 2008, 59: 2991–3007
[29]Krugman T, Chague V, Peleg Z, Balzergue S, Just J, Korol A B, Nevo E, Saranga Y, Chalhoub B, Fahima T. Multilevel regulation and signalling processes associated with adaptation to terminal drought in wild emmer wheat. Funct Integr Genomic, 2010, 10: 167–186
[30]Bright J, Desikan R, Hancock J T, Weir I S, Neill S J. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J, 2006, 45: 113–122
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!