欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1689-1694.doi: 10.3724/SP.J.1006.2011.01689

• 研究简报 • 上一篇    下一篇

玉米杂交种先玉335及其亲本种子萌发过程中胚芽蛋白质组学分析

进茜宁,付志远,丁冬,刘宗华,李卫华,汤继华*   

  1. 河南农业大学农学院 / 省部共建河南省粮食作物生理生态与遗传改良国家重点实验室培育基地, 河南郑州 450002
  • 收稿日期:2011-02-21 修回日期:2011-05-22 出版日期:2011-09-12 网络出版日期:2011-06-28
  • 通讯作者: 汤继华, E-mail: tangjihua1@163.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)重点项目(2009AA101103)和河南省重大公益项目资助。

Proteomic Analysis of Plumule in Seed Germination for an Elite Hybrid of Pioneer 335 and Its Parental Lines in Maize

IN Xi-Ning,FU Zhi-Yuan,DING Dong,LIU Zong-Hua,LI Wei-Hua,TANG Ji-Hua*   

  1. College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
  • Received:2011-02-21 Revised:2011-05-22 Published:2011-09-12 Published online:2011-06-28
  • Contact: 汤继华, E-mail: tangjihua1@163.com

摘要: 以培养84 h种子的胚芽(包括胚芽鞘)为试验材料, 对优良玉米杂交种先玉335与其亲本自交系的蛋白质组学差异进行了分析。结果表明, 在杂交种先玉335中共检测到560个蛋白点, 在亲本PH6WC和PH4CV分别检测到507个和508个蛋白点, 而且先玉335胚芽及胚芽鞘中81%的蛋白点表现非加性累积模式, 其中 288个蛋白点表现为超高亲的上调表达, 仅15个蛋白点表现超低亲的下调表达, 因此推测非加性蛋白的累积可能是杂交种先玉335胚芽萌发过程中胚芽及胚芽鞘杂种优势产生的主要原因。用于质谱分析的13个差异极显著蛋白主要涉及代谢途径、蛋白折叠、胁迫响应、细胞骨架和细胞解毒5种类型。

关键词: 玉米, 胚芽(胚芽鞘), 杂种优势, 蛋白质组学分析

Abstract: The plumule (including coleoptile) of seed cultured for 84 h was used as materials to analyze the proteomic difference between the elite hybrid Pioneer 335 and its parental lines by mean of 2-D electrophoresis method. The results showed that 560 protein spots were identified in Pioneer 335, 507 and 508 protein spots parental lines in its PH6WC and PH4CV, respectively. And in Pioneer 335, 81% protein spots exhibited nonadditive expression model. Out of them, 288 showed up-regulation with over high parent expression model. While only 15 showed down-regulation with over low parent expression model. Thus the accumulation of nonadditive expression protein might be the key factor resulting in heterosis at the tested development at stage in Pioneer 335 at least in this study. Notably, 13 significantly different protein spots between the hybrid and its parents were involved in metabolic pathway, protein folding, stress response, cytoskeleton and cell detoxification.

Key words: Maize, Plumule (including cleotiple), Heterosis, Proteomic analysis

[1]Dai J-R(戴景瑞). The breeding targets and development strategies of maize in China. J Agric Sci & Technol (中国农业科技导报), 2004, 6(suppl-1): 13–16 (in Chinese with English abstract)
[2]Lawrence C J, Walbot V. Translational genomics for bioenergy production from fuelstock grasses: maize as the model species. Plant Cell, 2007, 19: 2091–2094
[3]Moose S P, Dudley J W, Rocheford T R. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci, 2004, 9: 358–364
[4]Biswas J K, Isiam M S, Yasmeen R, Pervin S, Kabir M S, Alam S. Relative contribution of the coleoptiles and the first leaf length to seedling establishment of rice (Oryza sativa L.) as affected by anaerobic seedling in two different soils. Pakistan J Biol Sci, 2002, 5: 413–415
[5]Trachsel S, Messmer R, Stamp P, Ruta N, Hund A. QTLs for early vigor of tropical maize. Mol Breed, 2010, 25: 91–103
[6]Woltz J, TeKrony D M, Egli D B. Corn seed germination and vigor following freezing during seed development. Crop Sci, 2006, 46: 1526–1535
[7]Finch-Savage W E, Rowse H R, Dent K C. Development of combined inhibition and hydrothermal threshold models to simulate maize (Zea mays L.) and chickpea (Cucer aruetubym) seed germination in variable environments. New Phytologist, 2005, 165: 825–838
[8]Hochholdinger F, Guo L, Schnable P S. Lateral roots affect the proteome of the primary root of maize (Zea mays L.). Plant Mol Biol, 2004, 56: 397–412
[9]Hochholdinger F, Woll K, Guo L, Schnable P S. The accumulation of abundant soluble proteins changes early in the development of the primary roots of maize (Zea mays L.). Proteomics, 2005, 18: 4885–4893
[10]Liu Y, Lamkemeyer T, Jakob A, Mi G, Zhang F, Nordheim A, Hochholdinger F. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Proteomics, 2006, 6: 4300–4308
[11]Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk A L, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B, Nordheim A, Nettleton D, Schnable S P, Hochholdinger F. Transcriptomic and proteomic analyses of pericycle cells of the maize (Zea mays L.) primary root. Plant Physiol, 2007, 145: 575–588
[12]Hoecker N, Lamkemeyer T, Sarholz B, Paschold A, Fladerer C, Madlung J, Wurster K, Stahl M, Piepho H P, Nordheim A, Hochholdinger F. Analysis of nonadditive protein accumulation in young primary roots of a maize (Zea mays L.) F1-hybrid compared to its parental inbred lines. Proteomics, 2008, 8: 3882–3894
[13]Markelz N H, Costich D E, Brutnell T P. Photomorphogenic responses in maize seedling development. Plant Physiol, 2003, 133: 1–14
[14]Yu J-J(喻娟娟), Dai S-J(戴绍军). Research advances in plant proteomics. Chin Bull Bot (植物学报), 2009, 44: 410–425 (in Chinese with English abstract)
[15]Göerg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21: 1037–1053
[16]Hochholdinger F, Sauer M, Dembinsky D, Hoecker N, Muthreich N, Saleem M, Liu Y. Proteomic dissection of plant development. Proteomics, 2006, 6: 4076–4083
[17]Song X, Ni Z F, Yao Y Y, Xie C J, Li Z X, Wu H Y, Zhang Y H, Sun Q X. Wheat (Triticum aestivum L.) root proteome and differentially expressed root proteins between hybrid and parents. Proteomics, 2007, 7:3538–3557
[18]Fu Z-J(付忠军), Ding D(丁冬), Jin X-N(进茜宁), Wang C-C(王长城), Li Y-L(李永亮), Tang J-H(汤继华). Optimization of two-dimensional electrophoresis for proteome of maize silk. Plant Physiol Commun (植物生理学通讯), 2009, 45(12): 1215–1220 (in Chinese with English abstract)
[19]Hoecker N, Keller B, Muthreich N, Chollet D, Descombes P, Piepho H P, Hochholdinger F. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179: 1275–1283
[20]Auger D L,Gray A D,Ream T S, Kato A, Coe E H, Birchler J A. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics, 2005, 169: 389–397
[21]Ma J, Morrow D J, Fernandes J, Walbot V. Comparative profiling of the sense and antisense transcriptome of maize lines. Genome Biol, 2006, 7: R22
[22]Jahnke K, Sarholz B, Thiemann A, Kühr V, Gutiérrez-Marcos J F, Geiger H H, Piepho H P, Scholten S. Heterosis in early seed development: a comparative study of F1 embryo and endosperm tissues 6 days after fertilization. Theor Appl Genet, 2010, 120: 389–400
[23]Swanson-Wagner R A, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X F, Nettleton D, Schnable P S. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science, 2009, 326: 1118–1120
[24]Lippman Z B, Zamir D. Heterosis: revisiting the magic. Trends Genet, 2006, 23: 80–86
[25]Swanson-Wagner R A, Jia Y, Decook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA, 2006, 103: 6805–6810
[26]Stupar R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 lead to additive expression patterns in the F1 hybrid. Genetics, 2006, 173: 2199–2210
[27]Schiene-Fischer C, Yu C. Receptor accessory folding helper enzymes: the functional role of peptidyl prolyl cis/trans isomerases. FEBS Lett, 2001, 495: 1–6
[28]Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498
[29]Freire A P, Ferreira A, Gomes R, Cordeiro C. Anti-glycation defences in yeast. Biochem Soc Trans, 2003, 31: 1409–1412
[30]Dive D, Gratepanche S, Yera H, Bécuwe P, Daher W, Delplace P, Odberg-Ferragut C, Capron M, Khalife J. Superoxide dismutase in Plasmodium: a current survey. Redox Rep, 2003, 8: 265–267
[31]Rodríguez-Manzaneque M T R, Ros J, Cabiscol E, Sorribas A, Herrero E. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in xaccharomyces cerevisiae. Mol Cell Biol, 1999, 19: 8180–8190
[32]Ross J A, Kasum C M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr, 2002, 22: 19–34
[33]Xie D Y, Jackson L A, Cooper J D, Ferreira D, Paiva N L. Molecular and biochemical analysis of two cDNA clones encoding dihydro?avonol 4-reductase from Medicago truncatula. Plant Phyiol, 2004, 134: 979–994
[34]Thornalley P J. Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans, 2003, 31: 1343–1348
[35]Kittur F S, Lalgondar M, Yu H Y, Bevan D R, Esen A. Maize β-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for β-glucosidase aggregation. J Biol Chem, 2007, 282: 7299–7311
[36]Iacovache I, van der Goot F G, Pernot L. Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta, 2008, 1778: 1611–1623
[37]Tweten R K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun, 2005, 73: 6199–6209
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!