作物学报 ›› 2011, Vol. 37 ›› Issue (10): 1711-1723.doi: 10.3724/SP.J.1006.2011.01711

• 作物遗传育种·种质资源·分子遗传学 •    下一篇



  1. 中国水稻研究所 / 水稻生物学国家重点实验室 / 国家水稻改良中心, 浙江杭州310006
  • 收稿日期:2011-02-18 修回日期:2011-05-25 出版日期:2011-10-12 网络出版日期:2011-07-28
  • 通讯作者: 曹立勇, E-mail: caolycgf@mail.hz.zj.cn; 程式华, shcheng@mail.hz.zj.cn
  • 基金资助:


Analysis on Phenotypic Relationship between Roots and Important Shoot Agronomic Traits Using a RIL and Two Derived Backcross Populations of Super Rice Xieyou 9308

LIANG Yong-Shu,ZHAN Xiao-Deng,GAO Zhi-Qiang,LIN Ze-Chuan,SHEN Xi-Hong,CAO Li-Yong*,CHENG Shi-Hua*   

  1. State Key Laboratory of Rice Biology / China National Rice Research Institute / Chinese National Center for Rice Improvement, Hangzhou 310006, China
  • Received:2011-02-18 Revised:2011-05-25 Published:2011-10-12 Published online:2011-07-28
  • Contact: 曹立勇, E-mail: caolycgf@mail.hz.zj.cn; 程式华, shcheng@mail.hz.zj.cn

摘要: 利用超级稻协优9308重组自交系及其双回交群体,结合水面无土栽培技术和大田栽培,获得水稻地上部分蘖数、抽穗期和单株产量等10个性状和根长、总根长和根干重等7个根系性状数据,采用DPS统计软件分析XBR、RIL和ZHR群体这些性状相关性。结果表明,这些性状双亲间表现出显著或极显著的遗传差异,且在3个群体中都呈连续分布和双向超亲分离。根长分别与总根长、根表面积、根干重等5个性状极显著正相关,根直径与其他6个根系性状不显著相关。抽穗期、株高和单株产量等6个性状分别与根长、总根长和根干重等6个性状呈极显著正相关,但分蘖数、穗数、结实率、百粒重等4个性状与根系呈不显著相关,10个地上部农艺性状均与根直径不显著相关。这些结果为水稻根系遗传与育种提供了有价值的信息。本文还对利用地上部农艺性状间接选择强根系超级稻的育种策略进行了探讨。

关键词: 水稻, 根系, 地上部性状, 相关分析, XBR、RIL和ZHR群体

Abstract: A RIL population of Xieyou 9308 and two derived backcross populations derived from the RIL backcrossing with its recurrent parents were used in this study. Morphological traits were investigated including seven root parameters and ten shoot parameters under water culture and field experiment, respectively. Thephenotypic correlation between root traits and shoot traits was analyzed within XBR, RIL, and ZHR populations, carried out by ANOVA and correlation analysis utilizing DPS software. In both environments, the two recurrent parents showed significant difference in all traits. Transgressive-segregation and continuous distribution for all the traits were observed in three populations under two conditions. The root length (RL) correlated positively with five root traits including total root length (TRL), dry root weight (DRW), root surface area (RSA), root volume (RV), number of root tip (RT). However, the correlations between root diameter (RD) and the other six traits were negative. Six shoot agronomic traits including heading date (HD), plant height (PH), panicle length (PL), grain yield per plant (GYPP), number of spikelets per panicle (SPP), and grain setting density (GSD) showed a significantly positive correlation with theroot traitswhile the other four aboveground traits correlated with root traits negatively. All the ten shoot traits correlated with RD negatively. The goal of this work was therefore to provide some reliable information for hybrid breeding, and an useful selection criteria for super rice combination based on root morphological traits.

Key words: Rice (Oryza sativa L.), Roots, Shoot agronomic traits, Correlation analysis, XBR, RIL, and ZHR populations

[1]Cheng S-H(程式华). Chinese Super Rice Breeding (中国超级稻育种). Beijing: Science Press, 2010
[2]Donald C M. The breeding of crop idea plant types. Euphytica, 1968, 17: 385-403
[3]Yuan L-P(袁隆平). The strategic thinking of hybrid rice breeding. Hybrid Rice (杂交水稻), 1987, 2(1): 1-3 (in Chinese with English abstract
[4]Liang Y-S(梁永书), Li Y-P(李艳萍), Sun H-B(孙海波), Zou M-Z(邹美智), Wang J-Y(王景余), Liu X-J(刘学军), Li P(李平). Analysis of major agronomic traits of F2, F3 and F6 progenies derived from a rice subspecies cross Pei’ai 64s/Nipponbare. Chin Bull Bot (植物学通报), 2008, 25(1): 59-66 (in Chinese with English abstract)
[5]Guo L-B(郭龙彪), Luo L-J(罗利军), Zhong D-B(钟代斌), Mei H-W(梅捍卫), Wang Y-P(王一平), Yu X-Q(余新桥), Ying C-S(应存山). Analysis on main agronomic traits of a set of indica-japonica rice recombinant inbred lines (RIL). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 221-224 (in Chinese with English abstract)
[6]Kang H-Q(康海岐), Lu X-J(陆贤军), Gao F-Y(高方远), Liu G-C(刘光春), Ren M-X(任明鑫), Ren G-J(任光俊). Genetic and correlation analyses of cooked rice elongation (CRE) of the progenies from Basmati 370 backcrossed by Chenghui 448. Acta Agron Sin (作物学报), 2006, 32(9): 1361-1370 (in Chinese with English abstract)
[7]Guo L-B(郭龙彪), Luo L-J(罗利军), Xing Y-Z(邢永忠), Xu C-G(徐才国), Mei H-W(梅捍卫), Wang Y-P(王一平), Yu X-Q(余新桥), Ying C-S(应存山), Shi C-H(石春海). Genetic analysis and utilization of the important agronomic traits on Zhenshan 97×Minghui 63 recombinant inbred lines (RIL) in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(5): 644-649 (in Chinese with English abstract)
[8]Li Q(李强), Wang J-G(王敬国), An G-R(安光日), Zhang M(张明), Zou D-T(邹德堂), Cui C-H(崔成焕), Wang F-Y(王凤义), Han L-Z(韩龙植). Correlation and path coefficient analysis between grain yield and traits of plant type in rice. J Agric Sci & Technol (中国农业科技导报), 2008, 10(4): 48-55 (in Chinese with English abstract)
[9]He Z-T(何震天), Han Y-P(韩月鹏), Chen X-L(陈秀兰), Yang H-F(杨鹤峰). The application of path coefficient analysis in irradiation selection of single plant of rice. Acta Agric Nucl Sin (核农学报), 1998, 12(6): 372-374 (in Chinese with English abstract)
[10]Teo Y H, Beyrouty C A, Norman R J, Gbur E E. Nutrient uptake relationship to root characteristics of rice. Plant Soil, 1995, 171: 297-302
[11]Kwak K S, Iijima M, Yamauchi A, Kono Y. Carbon and nitrogen dynamics with aging in seminal root system of rice seedling. Crop Sci, 1995, 64: 629-635
[12]Kwak K S, Iijima M, Yamauchi A, Kono Y. Changes with aging of endogenous abscisic acid and zeatin riboside in the root system of rice. Crop Sci, 1996, 65: 686-692
[13]Terashima K, Ogata T, Akita S. Eco-physiological characteristics related with lodging tolerance of rice in direct sowing cultivation. Crop Sci, 1994, 63: 34-41
[14]Gregory P J, Lake J V, Rose D A. Root Development and Function. London: Cambridge University Press, 1987
[15]Luo L-J(罗利军), Zhang Q-F(张启发). The status and strategy on drought resistance of rice (Oryza sativa L). Chin J Rice Sci (中国水稻科学), 2001, 15(3): 50-55 (in Chinese with English abstract)
[16]Luo Z-X(罗志祥), Su Z-S(苏泽胜), Shi F-Z(施伏芝). The present situation and forecasting for high efficient nitrogen utilization of rice breeding. Chin Agric Sci Bull (中国农学通报), 2003, 19(1): 66-67 (in Chinese with English abstract)
[17]Cao S-Q(曹树青), Deng Z-R(邓志瑞), Zhai H-Q(翟虎渠). Analysis on heterosis and combining ability for root activity and its declined properties in indica hybrid rice. Chin J Rice Sci (中国水稻科学), 2002, 16(1): 19-23 (in Chinese with English abstract)
[18]Pan X-H(潘晓华), Wang Y-R(王永锐), Fu J-R(傅家瑞). Advance in the study on the growth-physiology of root system in rice (Oryza sativa L.). Chin Bull Bot (植物学通报), 1996, 13(2): 13-20 (in Chinese with English abstract)
[19]Sun C-Q(孙传清), Zhang W-X(张文绪). Inheritance and correlation of root characteristics and leaf water potential in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 1995, 28(1): 42-48 (in Chinese with English abstract)
[20]Shi Q-H(石庆华), Huang Y-J(黄英金), Li M-Y(李木英). Studies on the heredity of root characteristics and correlation between the characteristics of roots and upper-ground parts in rice. Sci Agric Sin (中国农业科学), 1997, 30(4): 61-67 (in Chinese with English abstract)
[21]Cheng J-F(程建锋), Pan X-Y(潘晓云), Liu Y-B(刘宜柏). The latest progress on methods of studying crop root system. Acta Agric Jiangxi (江西农业学报), 1999, 11(4): 55-59 (in Chinese with English abstract)
[22]Huang H(黄沆), Chen G-F(陈光辉). Status and prospects of research on rice root breeding. J Hunan Agric Univ (Nat Sci) (湖南农业大学学报?自然科学版), 2009, 35(10): 35-39 (in Chinese with English abstract)
[23]Wu W-M(吴伟明), Song X-F(宋祥甫), Sun Z-X(孙宗修), Yu Y-H(于永红), Zou G-Y(邹国燕). Comparison of root distribution between different type rice. Chin J Rice Sci (中国水稻科学), 2001, 14(4): 279-285 (in Chinese with English abstract)
[24]Song X-F(宋祥甫). Rice Water Soilless Cultivation (水稻无土栽培). Jinan: Shandong Science and Technology Press, 2001
[25]Wei W-M(吴伟明), Cheng S-H(程式华). Significance and prospects of breeding for root system in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2005, 19(2): 174-180 (in Chinese with English abstract)
[26]Comstock R E, RoBinson H F. The components of genetic variance in a population of bi-parental progeny and their use in estimating the average degree of dominance. Biometrics, 1948, 4: 254-266
[27]Yoshida S, Hasegawa S. The rice root system: its development and function. In: Drought resistance in crops, with emphasis on rice. International Rice Research Institute, Manila, Philippines, 1982
[28]Shen Z-T(申宗坦). Crop Breeding Experimental Design (作物育种实验设计). Beijing: Agriculture Press, 1992
[29]Bohm W. Methods of Studying Root System. Berlin: Springer, 1979
[30]Yamaguchi J, Tanaka A. Quantitative observation on the root system of various crops growing in the field. Soil Sci Plant Nat, 1990, 36: 483-493
[31]Coulson A, Sulston J, Brenner S, Karm J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA, 1986, 83:7821-7825
[32]Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146
[33]Inukai Y, Miwa M, Nagato Y, Kitano H, Yamauchi A. Characterization of rice mutants deficient in the formation of crown roots. Breed Sci, 2001, 51: 123-129
[34]Yao S G, Mushika J, Taketa S, Ichii M. The short-root mutation srt5 defines a sugar-mediated root growth in rice (Oryza sativa L.). Plant Sci, 2004, 167: 49-54
[35]Ma J F, Goto S, Tamai K, Ichii M. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol, 2001, 127: 1773-1780
[36]Naimatullah B, Hirotaka Y, Naoko K. Nishizawa, Hiromi N, Satoshi M. Cloning an iron-regulated metal transporter from rice. J Exp Bot, 2002, 53: 1677-1682
[37]Zhao Y, Hu Y F, Dai M G, Huang L M, Zhou D Y. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell, 2009, 21: 736-748
[38]Morita S, Suga T, Yamazaki K. The relationship between root length density and yield in rice plants. Crop Sci, 1988, 57: 438-443
[39]Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants. Crop Sci, 1996, 55: 520-525
[40]Cheng S-H(程式华), Cao L-Y(曹立勇), Chen S-G(陈深广), Zhu D-F(朱德峰), Wang X(王熹), Min S-K(闵绍楷), Zhai H-Q(翟虎渠). Conception of late-stage vigor super hybrid rice and its biological significance. Chin J Rice Sci (中国水稻科学), 2005, 19(3): 280-284 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Full text



No Suggested Reading articles found!