欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (12): 2152-2157.doi: 10.3724/SP.J.1006.2011.02152

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆逆境诱导基因GmPRP的克隆与表达

翟莹,雷婷婷,闫帆,黄开猛,李晓薇,张庆林,张海军,苏连泰,孙昕,王英,李景文*,王庆钰*   

  1. 吉林大学植物科学学院, 吉林长春 130062
  • 收稿日期:2011-05-10 修回日期:2011-07-25 出版日期:2011-12-12 网络出版日期:2011-09-29
  • 通讯作者: 王庆钰, E-mail: wqy414cn@yahoo.com.cn; 李景文, E-mail: ljwk9@163.com
  • 基金资助:

    本研究由转基因生物新品种培育重大专项子课题(2008ZX08004-003),国家自然科学基金面上项目(30971808),吉林省科技发展计划重点项目(20080204),长春市科技局国际科技合作项目(08GH10)和“211”三期建设项目资助。

Cloning and Expression of a Stress-induced GmPRP Gene in Soybean (Glycine max)

ZHAI Ying, LEI Ting-Ting,YAN Fan, HUANG Kai-Meng, LI Xiao-Wei, ZHANG Qing-Lin, ZHANG Hai-Jun, SU Lian-Tai, SUN Xin, WANG Ying, LI Jing-Wen*,WANG Qing-Yu*   

  1. College of Plant Sciences, Jilin University, Changchun 130062, China
  • Received:2011-05-10 Revised:2011-07-25 Published:2011-12-12 Published online:2011-09-29
  • Contact: 王庆钰, E-mail: wqy414cn@yahoo.com.cn; 李景文, E-mail: ljwk9@163.com

摘要: 通过对大豆吉林32未成熟胚表达谱的分析,利用RT-PCR技术从大豆中克隆了一个新的脯氨酸富集蛋白基因,命名为GmPRPGmPRP的开放阅读框长396 bp, 其分子量13.79 kD,具有131个氨基酸残基,等电点8.96,其DNA序列无内含子。GmPRP蛋白序列N端含有一段信号肽,中间为脯氨酸富集区,C端为半胱氨酸富集区。该蛋白与四季豆和木豆的PRP同源性最高, 具有较近的亲缘关系。GmPRP的683 bp启动子序列含有10种与逆境相关的顺式作用元件,分别为ABRE-like、G-box、W-box、GT-1、MYB、MYC、BIHD10s、DPBF、SEBF和WRKY。实时荧光定量PCR分析表明, 该基因表达量在大豆的根和叶中最高,在茎和胚中其次,在花中最低,且受干旱、高盐、低温、机械伤害及SA(水杨酸)、ETH(乙烯)、ABA(脱落酸)、MeJA (茉莉酸甲酯)的诱导上调表达。

关键词: GmPRP, 大豆, 逆境胁迫, 启动子, 表达分析

Abstract: Plant proline-rich proteins (PRPs) are putative cell wall proteins, which are usually associated with different abiotic and biotic stress conditions. A soybean mRNA sequence encoding a proline-rich protein (PRP) was cloned and designated as GmPRP from Jilin 32 immature embryo gene expression profiles using RT-PCR. The GmPRP consisted of an ORF with a length of 396 bp, and encoded 131 amino acids (13.79 kD) with an isoelectric point of 8.96. There was no intron in the DNA sequence of GmPRP. Except a repetitive proline-rich domain, GmPRP also contained a signal peptide in the N-terminal domain and a conserved eight cysteine motif in the C-terminal domain. The amino acid sequences of GmPRP, PvPRP and CcHyPRP shared high homology through phylogenetic analysis. The length of the promoter was 683 bp, containing several stress-induced elements: ABRE-like,G-box,W-box,GT-1,MYB,MYC,BIHD10s,DPBF,SEBF, and WRKY. Real-time quantitative PCR (qPCR) analysis revealed that GmPRP expressed highly in root and leaf and low in flower. qPCR was also performed to investigate the expression profiles of the GmPRP under different stresses such as drought, high salt, low temperature, wound, SA (salicylic acid), ETH (ethane), ABA (abscisic acid) and MeJA (methyl jasmonate). Under these stresses GmPRP showed up-regulated expression patterns. These results revealed that GmPRP might be involved in multiple pathways of plants responding to the different environmental conditions.

Key words: GmPRP, Soybean, Adversity stresses, Promoter, Expression analysis

[1]Sakamato K, Tada Y, Yokozeki Y, Akagi H, Hayashi N, Fujimura T, Ichikawa N .Chemical induction of disease resistance in rice is correlated with the expression of a gene encoding a nucleotide binding site and leucine-rich repeats. Plant Mol Biol, 1999, 40: 847–855
[2]Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone F, De Lorenzo G. A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus×domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol, 1999, 40: 945–57
[3]Li ZY, Chen SY. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stresses. Theor Appl Genet, 2000, 100: 782–788
[4]Merkouropoulos G, Barnett D C, Shirsat A H. The Arabidopsis extensin gene is developmentally regulated, is induced by wounding, methyl jamsmonate abscisic and salicylic acid, and codes for a protein with unusual motifs. Planta, 1999, 208: 212–219
[5]Showalter A M, Varner J E. Plant hydroxyproline-rich glycoproteins. Bioch Plant, 1989, 15: 485–520
[6]Jose-Estanyol M, Gomis-Rüth F X, Puigdomenech P. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Bioch, 2004, 42: 355–365
[7]Hong J C, Nagao R T, Key J L. Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell, 1989, 1: 937–43
[8]Deutch C E, Winicov I. Post-transcriptional regulation of a salt inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol, 1995, 27: 411–418
[9]Castonguay Y, Laberge S, Nadeau P, Vezina L P. A cold-induced gene from Medicago sativa encodes a bimodular protein similar to developmentally regulated proteins. Plant Mol Biol, 1994, 24: 799–804
[10]He C Y, Zhang J S, Chen S Y. A soybean gene encoding a proline rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002, 104: 1125–1131
[11]Zhang Y, Schlappi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta, 2007, 227: 233–243
[12]Priyanka B, Sekhar K, Reddy V D, Rao K V. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol J, 2010, 8: 76–87
[13]Zhang G Y, Chen M, Li L C, Xu Z S, Chen X P, Guo J M, Ma Y Z. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot, 2009, 60: 3781–3796
[14]Jose-Estanyol M, Ruiz-Avila L, Puigdomenech P. A maize embryo-speci?c gene encodes a proline-rich and hydrophobic protein. Plant Cell, 1992, 4: 413–423
[15]Jose-Estanyol M, Puigdomenech P. Plant cell wall glycoproteins and their genes. Plant Physiol Biochem, 2000, 38: 97–108
[16]Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa, S. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta, 2002, 215: 770–778
[17]Goodwin W, Pallas J A, Jenkins G I. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1995, 27: 411–418
[18]Achuo A E, Audenaert K, Meziane H, Hofte M. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol, 2004, 53: 65–72
[19]Bleeeker A B, Kende H. Ethylene: a gaseous signal molecule in Plants. Annu Rev Cell Dev Biol, 2000, 16: 1–18
[20]Detelf M, Furini A, Franeesseo S. Structure and regulation of an ABA-and desiccation-responsive gene from the resurrection Plant Cratrostigma Plantagineum. Plant Mol Biol, 1994, 24: 549–560
[21]Vijayan P, Shoekey J, Levesque C A, Cook R J, Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 7209–7214
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[14] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[15] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!