欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (03): 408-415.doi: 10.3724/SP.J.1006.2012.00408

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻两用核不育系龙S抗稻瘟病主效基因的定位

王建龙1,2,吴立群2,刘建丰1, 戴良英1,刘雄伦1,肖应辉1,谢红军3,刘群恩1,李婷1,贾先勇2,王国梁1,4,*,袁隆平5,*   

  1. 1湖南农业大学,湖南长沙 410128;2湖南金健种业有限责任公司,湖南常德 415000;3湖南省水稻研究所,湖南长沙 410125;4美国俄亥俄州州立大学,俄亥俄州哥伦布 43210;5国家杂交水稻工程技术研究中心,湖南长沙 410125
  • 收稿日期:2011-06-21 修回日期:2011-12-15 出版日期:2012-03-12 网络出版日期:2012-01-04
  • 通讯作者: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-82872998; 王国梁, E-mail: wang.620@osu.edu, Tel: 0731-84638423
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2010AA101306)和湖南农业大学引进人才基金项目(11YJ14)资助?

Mapping of the Resistant Gene to Rice Blast in the Dual Purpose Genic Male Sterile Rice, LongS

WANG Jian-Long1,2,WU Li-Qun2,LIU Jian-Feng1,DAI Liang-Ying1,LIU Xiong-Lun1,XIAO Ying-Hui1,XIE Hong-Jun3,LIU Qun-En1,LI Ting1,JIA Xian-Yong2,WANG Guo-Liang1,4,*,YUAN Long-Ping5,*   

  1. 1Hunan Agricultural University, Changsha 410128, China; 2Hunan Jinjian Seed Industry Co., Ltd, Changde 415000, China; 3Hunan Rice Research Institute, Changsha 410125, China; 4Ohio State University, Columbus 43210, USA; 5China National Hybrid Rice Research and Development Center, Changsha 410125, China
  • Received:2011-06-21 Revised:2011-12-15 Published:2012-03-12 Published online:2012-01-04
  • Contact: 袁隆平, E-mail: lpyuan@hhrrc.ac.cn, Tel: 0731-82872998; 王国梁, E-mail: wang.620@osu.edu, Tel: 0731-84638423

摘要: 龙S是一个广谱抗稻瘟病的水稻两用核不育系,利用分子标记技术精细定位其主效抗性基因,对于培育抗稻瘟病水稻新品种具有重要意义。采用来自国内外的41个稻瘟病菌系通过接种鉴定方式对龙S进行了稻瘟病抗谱分析,结果显示龙S的抗性频率为100%,对其中39个菌系表现高水平抗性,与Pi9的携带品种75-1-127抗性频率和抗病级别基本相当。群体遗传分析表明龙S的抗性基因表现为显性遗传方式,对于不同菌系龙S表现出不同的抗病遗传模式,其中龙S对稻瘟菌系318-2的抗性由单基因控制。通过抗病亲本龙S与感病亲本日本晴构建F2分离群体,采用BSA (bulk segregant analysis)及RCA (recessive class analysis)分析方法,将龙S的主效抗病基因精细定位于第9染色体上的SSR标记M1-M2所在的1.31 cM区间,与已克隆的广谱抗稻瘟病基因Pi5位于相邻的染色体区域。抗谱分析表明,龙S与Pi5Pii单基因系的抗性频率差异明显,抗谱较后二者更广。龙S主效抗性基因的精细定位,为进一步揭示其与Pi5Pii的等位关系以及通过分子标记辅助选择培育抗病水稻新品种奠定了基础。

关键词: 水稻, 龙S, 稻瘟病, 抗性基因, 基因定位

Abstract: LongS is a dual purpose genic male sterile rice with broad-spectrumresistance to rice blast. The objective of the present study was to identifythe resistance spectrumto rice blast, to analyze thegenetic behavior ofresistance gene, and tomap the major resistancegenes in LongS. LongS had a resistance frequency of 100% inoculatedwith 41strainsofMagnaporthe oryza. Population geneticanalysis showed that theresistance genes in LongSexhibited dominant inheritance, the genetic model of R gene varied depend on the strainsof Magnaporthe oryzae. The main-effect resistant gene to rice blast was fine mapped, by using the bulk segregant analysis (BSA) and recessive class analysis (RCA) methods, with the F2 population derived from the resistant parent of LongS and the susceptible parent of Nipponbare. Asingle resistant gene to the race of 318-2 locatedon the interval flanked by the SSRmarkersof M1 and M2with a genetic distance of 1.3 cM onchromosome 9 were adjacent to the broad-spectrum blast resistance gene, Pi5. Both of the resistance spectrum and resistant frequency of LongS, however, were significantly different to those of resistant gene of Pi5 and Pii. In conclusion, the major-effect resistant gene identified in this study may be a new broad-spectrum blast resistance gene. The DNA markers linked to the new R gene identified in this study should be useful for marker-aided breeding of blast-resistant rice cultivars.

Key words: Rice, LongS, Rice blast, Resistant gene, Gene mapping

[1]Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan Q H, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980–986

[2]Liu J L, Wang X J, Mitchell T, Hu Y J, Liu X L, Dai L Y, Wang G L. Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Mol Plant Pathol, 2010, 11: 419–427

[3]Ballini E, Morel J B, Droc G, Price A, Courtois B, Notteghem J L, Tharreau D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact, 2008, 21: 859–868

[4]Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae in the indica rice cultivar Zhe733. Mol Breed, 2009, 24: 127–134

[5]Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q. Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed, Online First, 31 July 2010, DOI: 10.1007/s11032-010-9481-6

[6]Huang H M, Huang L, Feng G P, Wang S H, Wang Y, Liu J L, Jiang N, Yan W T, Xu L C, Sun P Y, Li Z Q, Pan S J, Liu X L, Xiao Y H, Liu E M, Dai L Y, Wang G L. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011, 101:620–626

[7]Jie C, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L. A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011, 38: 209–216

[8]Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172: 1901–1914

[9]Suh J P, Roh J H, Cho Y C, Han S S, Kim Y G, Jena K K. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology, 2009, 99: 243–250

[10]Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181: 1627–1638

[11]Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J C, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46: 794–804

[12]Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50-56

[13]Fuentes J L, José Correa-Victoria F, Escobar F, Prado G, Aricapa G, Duque M C, Tohme J. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica, 2008, 160: 295–304

[14]Zhou B, Qu S H, Liu G F, Maureen D, Hajime S, Lu G D, Maria B, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006, 19: 1216–1228

[15]Li W, Lei C L, Cheng Z J, Jia Y L, Huang D Y, Wang J L, Wang J K, Zhang X, Su N, Guo X P, Zhai H Q, Wan J M. Identification of SSR markers for a broad-spectrum blast resistance gene Pi20(t) for marker-assisted breeding. Mol Breed, 2008, 22: 141–149

[16]Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet, 2003, 107: 1139–1147

[17]Deng Y W, Zhu X D, Shen Y, He Z H. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113: 705–713

[18]Xu X, Hayashi N, Wang C T, Kato H, Fujimura T, Kawasaki S. Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breed, 2008, 22: 289–299

[19]Liu J-F(刘建丰), Li C-G(李春庚). Breeding of rice PTGMS line LongS with good disease resistance and grain quality. Hybrid rice(杂交水稻), 2010, 25(3): 3–4 (in Chinese with English abstract)

[20]International rice genome sequencing project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800

[21]McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 199–207

[22]Jeremy D E, Jaroslav J, Megan T S, Ambika B G, Liu B, Hei L, David W G. Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods, 2008, 4: 13

[23]Lincoln S, Daley M, Lander E. Constructing Genetic Maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical Report, Cambridge, 1992

[24]Yang Q-Z(杨勤忠), Lin F(林菲), Feng S-J(冯淑杰), Wang L(王玲), Pan Q-H(潘庆华). Recent progress on molecular mapping and cloning of blast resistance genes in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 2009, 42(5): 1601–1615 (in Chinese with English abstract)

[25]Liu H(刘海), Xiao Y-H(肖应辉), Tang W-B(唐文邦), Deng H-B(邓化冰), Chen L-Y(陈立云). Development and application of a computer-aided selection system for thermo-sensitive genic male sterile rice multiplying site. Acta Agron Sin(作物学报), 2011, 37(5): 755–763 (in Chinese with English abstract)

[26]Yang S-H(杨仕华), Cheng B-Y(程本义), Shen W-F(沈伟峰), Xia J-H(夏俊辉). Progress of application and breeding on two-line hybrid rice in China. Hybrid Rice (杂交水稻), 2009, 24(1): 5–9 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!