欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1196-1204.doi: 10.3724/SP.J.1006.2012.01196

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆种质资源叶型和荚粒性状的关系及与SSR标记的关联分析

伍宝朵,陈海峰**,郭丹丹,沙爱华,单志慧,张晓娟,杨中路,邱德珍,陈水莲,朱晓玲,张婵娟,周蓉*,周新安*   

  1. 中国农业科学院油料作物研究所 / 农业部油料作物生物学重点开放实验室, 湖北武汉 430062
  • 收稿日期:2011-10-17 修回日期:2012-02-22 出版日期:2012-07-12 网络出版日期:2012-05-11
  • 通讯作者: 周蓉, E-mail: zhourong@oilcrops.cn, Tel: 027-86735887; 周新安, E-mail: xazhou@public.wh.hb.cn, Tel: 027-86711563
  • 基金资助:

    本研究由国家自然科学基金项目(30871554, 30900906), 中国农业科学院公益性院所科研基金(1610172011006), 作物种质资源保护项目(NB08-2130315-06)和国家转基因生物新品种培育重大专项(2008ZX08004-005, 2009ZX08009-133B, 2009ZX08009-120B)资助。

Relationship of Leaf Shape, Pod Traits and Association with SSR Markers in Soybean Germplasm

WU Bao-Duo**,CHEN Hai-Feng**,GUO Dan-Dan,SHA Ai-Hua,SHAN Zhi-Hui,ZHANG Xiao-Juan,YANG Zhong-Lu,QIU De-Zhen,CHEN Shui-Lian,ZHU Xiao-Ling,ZHANG Chan-Juan,ZHOU Rong*,ZHOU Xin-An*   

  1. Oil Crops Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan 430062, China
  • Received:2011-10-17 Revised:2012-02-22 Published:2012-07-12 Published online:2012-05-11
  • Contact: 周蓉, E-mail: zhourong@oilcrops.cn, Tel: 027-86735887; 周新安, E-mail: xazhou@public.wh.hb.cn, Tel: 027-86711563

摘要: 选用167份国内外大豆品种资源材料,依据叶长/宽比值将其划分为宽叶型和窄叶型, 分析叶型相关性状与荚粒性状的相关性,结果表明叶宽、叶长/宽比均与每荚粒数显著相关(r = –0.69和0.64,P<0.001)。选用均匀分布于大豆20条连锁群上的65个SSR标记分析资源材料的群体结构,并用目标区间内13个SSR标记与叶型相关性状和荚粒性状进行关联分析, 结果显示,标记20-285与每荚粒数显著关联,推测控制每荚粒数的基因可能位于标记20-285附近;标记20-26和20-45间的标记几乎都与叶长/宽比存在显著的关联性,推测控制叶型的基因位于标记20-26和20-45之间。相关分析和关联分析证实大豆叶型与荚粒性状存在密切关系,并缩小了每荚粒数和叶型候选基因的区间。

关键词: 大豆, 叶型, 荚粒性状, 相关性分析, 关联分析

Abstract: Pod traits are important factors affecting soybean yield, and they have been identified to tightly associate with leaf shape. In present study, leaf shape/pod traits were analyzed using 167 soybean accessions, which were classified into two types (broad and narrow leaflets) based on the ratio of leaf length/width. Correlation analysis was carried out between leaf shape related traits and pod traits; ANOVA analysis was also performed using 65 SSR markers, evenly distributed in 20 linkage groups; association analysis was carried out using 13 SSR markers on the target regions. Marker 20-285, locating on chromosome I, highly associated with number of seeds per pod, indicating that the gene controlling number of seeds per pod may co-locate with marker 20-285. Almost all markers between 20-26 and 20-45 were associated with ratio of leaf length/width. We speculated that the genes controlling leaf shape were located in the region from marker 20-26 to 20-45. Hence, it was proved the target region harboring candidate genes of leaf shape and pod number was narrowed. Our study may provide a potential approach in molecular marker-assisted breeding of seeds per pod, and a theoretical guide for cloning the gene of seeds per pod.

Key words: Soybean [Glycine max (L.) Merri], Leaf shape, Pod traits, Correlation analysis, Association analysis

[1]Domingo W E. Inheritance of number of seeds per pod and leaflet shape in the soybean. J Agric Sci, 1945, 70: 251–268

[2]Takahashi N. Linkage relation between the genes for the form of leaves and the number of seeds per pod of soybeans. Jpn J Genet, 1934, 9: 208–225

[3]Porter C. Inheritance of the Gene(s) Controlling Leaflet Shape in Soybean. MS thesis of Virginia Polytechnic Institute and State University, 2000

[4]Weiss M G. Genetic linkage in soybeans: linkage group IV. Crop Sci, 1970, 10: 368–370

[5]Bernard R L, Weiss M G. Qualitative genetics. In: Caldwell B E, ed. Soybeans: Improvement, Production and Uses. Madison, WI, American Society of Agronomy, 1973. pp 117–154

[6]Sawada S. Inheritance of leaflet shape in soybeans. Soybean Genet Newsl, 1988, 15: 61–65

[7]Mandl F A, Buss G R. Comparison of narrow and broad leaflet isolines of soybean. Crop Sci, 1981, 21: 25–27

[8]You M G, Liu Y B, Zhao T J, Gai J Y. Effects of leaf shape on seed yield and its components in soybeans. Soybean Genet Newsl, 1995, 22: 66–70

[9]Wilcox J R, Abney T S. Inheritance of a narrow, rugose-leaf mutant in Glycine max. J Hered, 1991, 82: 421–423

[10]Balaiah C, Reddy P S, Reddi M V. Genic analysis in groundnut: I. Inheritance studies on 18 morphological characters in crosses with Gujarat narrow leaf mutant. Proc Indian Acad Sci, 1977, 85B(5): 340–350

[11]Nagel L, Brewster R, Riedell W E, Reese R N. Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.). Ann Bot, 2001, 88: 27–31

[12]Ikeda T, Ohnishi S, Senda M, Miyoshi T, Ishimoto M, Kitamura K, Funatsuki H. A novel major quantitative trait locus controlling seed development at low temperature in soybean (Glycine max). Theor Appl Genet, 2009, 118: 1477–1488

[13]Kantolic A G, Slafer G A. Development and Seed Number in Indeterminate Soybean as Affected by Timing and Duration of Exposure to Long Photoperiods after Flowering. Annals of Botany, 2007, 99: 925–933

[14]Mathew J P, Herbert S J, Zhang S H, Rautenkranz A A F, Litchfield G V. Differential Response of Soybean Yield Components to the Timing of Light Enrichment. Agron J, 2000, 92: 1156–1161

[15]Flint-Garcia S, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357–374

[16]Hansen M, Kraft T, Ganestam S, Sall T, Nilsson N O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res, 2001, 77: 61–66

[17]Wilson L M, Whitt S R , Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate associations. Plant Cell, 2004, 16: 2719–2733

[18]Lam H M, Xu X, Liu X, Chen W B, Yang G H, Wong F L, Li M W, He W M, Qin N, Wang B, Li J, Jian M, Wang J, Shao G H, Wang J, Sun S S M, Zhang G Y. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet, 2010, 42: 1053–1059

[19]Jun T H, Van K J, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica, 2008, 162: 179–191

[20]Wand X-Z(王贤智), Zhang X-J(张晓娟), Zhou R(周蓉), Sha A-H(沙爱华), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安). QTL analysis of seed and pod traits in soybean RIL population. Acta Agron Sin (作物学报), 2007, 33(3): 441–448 (in Chinese with English abstract)

[21]Zhou R(周蓉), Chen H-F(陈海峰), Wang X-Z(王贤智), Zhang X-J(张晓娟), Shan Z-H(单志慧), Wu X-J(吴学军), Cai S-P(蔡淑平), Qiu D-Z(邱德珍), Zhou X-A(周新安), Wu J-S(吴江生). QTL analysis of yield, yield components, and lodging in soybean. Acta Agron Sin (作物学报), 2009, 35(5): 821–830 (in Chinese with English abstract)

[22]Chen H F, Shan Z H, Sha A H, Wu B D, Yang Z L, Chen S L, Zhou R, Zhou X A. Quantitative trait loci analysis of stem strength and related traits in soybean. Euphytica, 2011, 179: 485–497

[23]Qiu L-J(邱丽娟), Chang R-Z(常汝镇), Liu Z-X(刘章雄). Soybean Germplasm Description Specifications and Data Standards (大豆种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006 (in Chinese)

[24]Wei Chen W, Zhang Y, Liu X P, Chen B Y, Tu J X, Fu T D. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet, 2007, 115: 849–858

[25]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620

[26]Andersen J R, Schrag T, Melchinger A E, Zein I, Lubberstedt T. Validation of dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet, 2005, 111: 206–217

[27]Ingvarsson P K, Street N R. Association genetics of complex traits in plants. New Phytol, 2011, 189: 909–922

[28]Yu J, Buckler E S. Genetic association mapping and genome organization of maize. Curr Opinion Biotechnol, 2006, 17: 155–160

[29]Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants:Present status and future prospects. Plant Mol Biol, 2005, 57: 461–485

[30]Andersen J R, Lübberstedt T. Functional markers in plants. TRENDS in Plant Science, 2003, 8: 554–560

[31]Gupta P K, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics, 2004, 4: 139–162

[32]Lund M S, Sorensen P, Guldbrandtsen B, Sorensen D A. Multitrait fine mapping of quantitative trait loci using combined linkage disequilibria and linkage analysis. Genetics, 2003, 163: 405–410

[33]Meuwissen T H E, Goddard M E. Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet. Sel. Evol., 2004, 6: 261–279

[34]Dinkins R D, Keim K R, Farno L, Edwards L H. Expression of the narrow leaflet gene for yield and agronomic traits in soybean. Am Genet Assoc, 2002, 93: 346–351

[35]Kunta T, Edwards L H, Keim K R. Heterosis, inbreeding depression, and combining ability in soybeans [Glycine max (L.) Merr.]. SABRAO J Breed Genet, 1997, 29: 21–32

[36]Gadag R N, Upadhyaya H D. Heterosis in soybean [Glycine max (L.) Merr.]. Indian J Genet, 1995, 55: 308–314

[37]Johnson H W, Bernard R L. Soybean genetics and breeding. Adv Agron, 1962, 14: 149–221

[38]Jeong N, Moon J K, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122: 865–874
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!