欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1277-1285.doi: 10.3724/SP.J.1006.2012.01277

• 耕作栽培·生理生化 • 上一篇    下一篇

不同氮利用效率基因型水稻茎秆特性比较

李敏1,2,张洪程1,*,杨雄1,葛梦婕1,马群1,魏海燕1,戴其根1,霍中洋1,许轲1   

  1. 1 扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室,江苏扬州225009;2贵州省水稻研究所,贵州贵阳550006
  • 收稿日期:2011-12-13 修回日期:2012-04-15 出版日期:2012-07-12 网络出版日期:2012-05-15
  • 通讯作者: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220
  • 基金资助:

    本研究由国家自然科学基金项目(30971732和31101102), 国家粮食丰产科技工程项目(2011BAD16B03), 贵州省水稻育种、栽培与产业化创新能力建设项目(黔科合 院所创能 合[2011]4003)和贵州山区水稻科研基础条件建设项目(黔科条中补地[2011]4005)资助。

Comparison of Culm Characteristics with Different Nitrogen Use Efficiencies for Rice Cultivars

LI Min1,2,HANG Hong-Cheng1,*,YANG Xiong1,GE Meng-Jie1,MA Qun1,WEI Hai-Yan1,DAI Qi-Gen1,HUO Zhong-Yang1,XU Ke1   

  1. 1 Innovation Center of Rice Technology in Yangtze Rice Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; 2 Rice Research Institute of Guizhou Province, Guiyang 550006, China
  • Received:2011-12-13 Revised:2012-04-15 Published:2012-07-12 Published online:2012-05-15
  • Contact: 张洪程, E-mail: hczhang@yzu.edu.cn, Tel: 0514-87979220

摘要: 选用低产氮低效型、高产氮中效型和高产氮高效型具有代表性的6个粳稻品种,在各基因型各自最适氮素水平下,研究了茎秆力学特性、物理特性和化学成分含量的差异及其与氮效率的关系。结果表明:(1)较之低产类型品种,高产类型品种茎秆基部N1节间变短、N6节间变长,株高有所增加;茎粗、茎壁厚、茎鞘干重均极显著增加;茎鞘的K、Si含量极显著增加,N含量显著降低。由于茎秆物理性状的改善及化学成分的差异导致茎秆综合抗折力明显提高,倒伏指数降低。(2)同为高生产力类型品种,因氮效率的差异茎秆形态生理特征表现不同。较之高产氮中效类型,高产氮高效类型水稻品种茎秆N4、N5节间变长;茎秆粗度略有降低,但茎壁厚增加,表现茎秆干重增加,充实度加强;茎鞘的K含量无明显变化,但Si含量显著降低,N含量也呈降低趋势。对于高产品种,适当增加N4、N5节间长度以改善叶片配置,适当降低茎粗而提高壁厚和充实度以保证茎秆抗折力和输导能力,适当降低茎鞘Si含量以促进氮素的转移,有利于进一步提高氮肥利用率。

关键词: 水稻, 高产高效, 茎秆, 形态

Abstract: The morphological and physiological characteristics of low-yielding and low N-efficiency, high-yielding and medium N-efficiency, high-yielding and high N-efficiency of rice cultivars were investigated using six representative japonica varieties under their respective optimal N application levels. The results showed that compared with low-yielding varieties, high-yielding varieties showed shorter basal 1st internodes, longer basal 6th internodes, increased plant height, larger culm diameter and wall thickness, significantly higher dry weight of stem and sheath, obviously increased K and Si content in culm and sheath, and a higher ratio of Si to N. As a result of their improved stalk physical characteristics and the different chemical compositions, the comprehensive breaking resistance of the culm of high-yielding cultivars was improved evidently, and the lodging index reduced as well. The cultivars with different N-efficiencies displayed diverse culm morphological and physiological characteristics even though they were all in one high-yielding level. Comparing with medium N-efficiency genotypes, the high N-efficiency ones had longer 4th and 5th internode lengths, increased culm wall thickness, in spite of slightly decreased culm diameter, resulted in higher dry weight and strengthened plumpness status of culm, significantly decreased content of Si in stem and sheath, decreased N content, and remarkably unchanged K content. Given these results, for the purpose of further increasing the nitrogen fertilizer use efficiency of the high-yielding varieties, it would be favorable to properly increase 4th and 5th internode length, thus improving top three leaves configuration, to appropriately reduce the culm diameter while increasing wall thickness and filling degree for the sake of stalk breaking resistance and transporting capability, and to properly reduce the content of Si in culm and sheath to facilitate the translocation of nitrogen.

Key words: Rice, High-yielding and high N-efficiency, Culm, Morphological characteristics

[1]Zhang X-J(张喜娟), Li H-J(李红娇), Li W-J(李伟娟), Xu Z-J(徐正进), Chen W-F(陈温福), Zhang W-Z(张文忠), Wang J-Y(王嘉宇). The lodging resistance of erect panicle japonica rice in northern China. Sci Agric Sin (中国农业科学), 2009, 42(7): 2305–2313 (in Chinese with English abstract)
[2] Yang H-J(杨惠杰), Yang R-C(杨仁崔), Li Y-Z(李义珍), Jiang Z-W(姜照伟), Zheng J-S(郑景生). Relationship between culm traits and lodging resistance of rice cultivars. Fujian J Agric Sci (福建农业学报), 2000, 15(2): 1–7 (in Chinese with English abstract)
[3] De Datta S K, Buresh R J. Integrated nitrogen management in irrigated rice. Adv. Soil Sci, 1989, 10: 143–169
[4] Vlek P L G, Byrnes B H. The efficiency and loss of fertilizer N in low land rice. Fert Res, 1986, 9: 131–147
[5] De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia. Fert Res, 1986, 9: 171–186
[6] Li M(李敏), Zhang H-C(张洪程), Li G-Y(李国业), Wei H-Y(魏海燕), Yin C-Y(殷春渊), Ma Q(马群), Yang X(杨雄).Genotypic difference in nitrogen use efficiency in rice and its morphological and physiological mechanisms. J Nucl Agric Sci (核农学报), 2011, 25(5): 1057–1063 (in Chinese with English abstract)
[7] Yang S-M(杨世民), Xie L(谢力), Zheng S-L(郑顺林), Li J(李静), Yuan J-C(袁继超). Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice. Acta Agron Sin (作物学报), 2009, 35(1): 93–103 (in Chinese with English abstract)
[8] Liu L-J(刘立军), Yuan L-M(袁莉民), Wang Z-Q(王志琴), Xu G-W(徐国伟), Chen Y(陈云). Preliminary studies on physiological reason and countermeasure of lodging in dry-cultivated rice. Chin J Rice Sci (中国水稻科学), 2002, 16(3): 225–230 (in Chinese with English abstract)
[9] Li J(李杰), Zhang H-C(张洪程), Gong J-L(龚金龙), Chang Y(常勇), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕). Effect of different planting methods on the culm lodging resistance of super rice. Sci Agric Sin (中国农业科学), 2011, 44(11): 2234–2243 (in Chinese with English abstract)
[10] Li H-J(李红娇), Zhang X-J(张喜娟), Li W-J(李伟娟), Xu Z-J(徐正进), Xu H(徐海). Lodging resistance in japonica rice varieties with different panicle types. Chin J Rice Sci (中国水稻科学), 2009, 23(2): 191–196 (in Chinese with English abstract)
[11] Ma J(马均), Ma W-B(马文波), Tian Y-H(田彦华), Yang J-C(杨建昌), Zhou K-D(周开达), Zhu Q-S(朱庆森). The culm lodging resistance of heavy panicle type of rice. Acta Agron Sin (作物学报), 2004, 30(2): 143–148 (in Chinese with English abstract)
[12] Ma Q(马群), Yang X(杨雄), Li M(李敏), Li G-Y(李国业), Zhang H-C(张洪程), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Wei H-Y(魏海燕), Gao H(高辉). Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin (中国农业科学), 2011, 44(20): 4159–4169 (in Chinese with English abstract)
[13] Ma Q(马群). Studies on the Highest Population Productivity of N Fertilizer and Its Growth Factors of Rice Cultivars. PhD Dissertation of Yangzhou University, 2011 (in Chinese with English abstract)
[14] Seko H. Studies on lodging in rice plants. Journal of Kyushu Agricultural Experiment Station, 1962, 7: 419–495 (in Japanese)
[15] Agro-Chemistry Specialty Committee of the Soil Science Society of China (中国土壤学会农业化学专业委员会). General Analysis Methods in Soil Agro-Chemistry (土壤农业化学常规分析方法). Beijing: Science Press, 1983.pp 285–286 (in Chinese)
[16] Ookawa T, Ishihara K. Varietal difference of physical characteristic of the culm related to lodging resistance in paddy rice. Jpn J Crop Sci, 1992, 61: 419–425
[17] Ookawa T, Ishihara K. Varietal difference of the cell wall components affecting the bending stress of the culm relating to the lodging resistance in paddy rice. Jpn J Crop Sci, 1993, 62: 378–383
[18] Yuan L-P(袁隆平). Hybrid rice breeding for super high yield. Hybrid Rice (杂交水稻), 1997, 12(6): 1–3 (in Chinese with English abstract)
[19] Kashiwagi T, Hirotsu N, Ujiie K, Ishimaru K. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.) Field Crops Res, 2010, 115: 107–115
[20] Kashiwagi, T., Ishimaru K. Identification and functional analysis of a locus for improvement of lodging resistance in rice. Plant Physiol, 2004, 134: 676–683
[21] Kashiwagi, T., Sasaki H, Ishimaru K. Factors responsible for decreasing sturdiness of the lower part in lodging of rice (Oryza sativa L.). Plant Prod. Sci. 2005, 8: 166–172
[22] Kashiwagi, T., Madoka, Y., Hirotsu, N., Ishimaru, K.,. Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation. Plant Physiol Biochem, 2006, 44: 152–157
[23] Zhang M-C(张明聪), Liu Y-Y(刘元英), Luo S-G(罗盛国), Peng X-L(彭显龙), Chen L-N(陈丽楠), Li Z-Y(李宗云), Li J(李佳). Effects of integrated nutrient management on lodging resistance of rice in clod area, Sci Agric Sin (中国农业科学), 2010, 43 (21): 4536–4542 (in Chinese with English abstract)
[24] Hossain K A, Horiuchi T, Miyagawa S. Effects of powdered rice chaff application on Si and N absorption, lodging resistance and yield in rice plants (Oryza sativa L.). Plant Production Sci, 1999, 2: 159–164
[25] Gan X-Q(甘秀芹), Jiang L-G(江立庚), Xu J-Y(徐建云), Dong D-F(董登峰), Wei S-Q(韦善清). Characteristics and genotypic difference of silicon accumulation and distribution in rice. Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 10(5): 531–535 (in Chinese with English abstract)
[26] Wei H-Y(魏海燕), Zhang H-C(张洪程), Hang J(杭杰), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Zhang S-F(张胜飞), Ma Q(马群), Zhang Q(张庆), Zhang J(张军). Characteristics of N accumulation and translocation in rice genotypes with different N use efficiencies. Acta Agron Sin (作物学报), 2008, 34(1): 119–125 (in Chinese with English abstract)
[27] Zhang Y-L(张亚丽), Fan J-B(樊剑波), Duan Y-H(段英华), Wang D-S(王东升), Ye L-T(叶利庭), Shen Q-R(沈其荣).Variation of nitrogen use efficiency of different rice in genotype and its evaluation. Acta Pedologica Sin (土壤学报), 2008, 45(2): 267–273(in Chinese with English abstract)
[28] Wei H-Y(魏海燕), Zhang H-C(张洪程), Ma Q(马群), Dai Q-G(戴其根), Huo Z-Y(霍中洋), Xu K(许轲), Zhang Q(张庆), Huang L-F(黄丽芬). Photosynthetic characteristics of flag leaf in rice genotypes with different nitrogen use efficiencies. Acta Agron Sin (作物学报), 2009, 35(12): 2243–2251 (in Chinese with English abstract)
[29] Zhang Q(张庆), Yin C-Y(殷春渊), Zhang H-C(张洪程), Wei H-Y(魏海燕), Ma Q(马群), Hang J(杭杰),Li M(李敏), Li G-Y(李国业). Differences of plant-type characteristics between rice cultivars with high and low levels in yield and nitrogen use efficiency. Acta Agron Sin (作物学报), 2010, 36(6): 1011–1021 (in Chinese with English abstract)
[30] Sun X-C(孙旭初). Studies on the resistance of the culm of rice to lodging. Sci Agric Sin (中国农业科学), 1987, 20(4): 32–37 (in Chinese)
[31] Jiang L-G(江立庚), Cao W-X(曹卫星), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云), Dong D-F(董登峰), Chen N-P(陈念平), Qin H-D(秦华东), Lu F-Y(陆福勇). Relationship of nitrogen uptake and utilization to silicon nutrition in rice. Sci Agric Sin (中国农业科学), 2004, 37(5): 648–655 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!