欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1387-1396.doi: 10.3724/SP.J.1006.2012.01387

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

贵州省花生地方品种的遗传多样性

林茂1,2,李正强2,郑治洪2,吕建伟2,马天进2,李超3,*,阚健全1,*   

  1. 1西南大学食品科学学院,重庆400716;2贵州省农作物品种资源研究所,贵州贵阳550006; 3贵州省油料研究所,贵州贵阳550006
  • 收稿日期:2011-12-16 修回日期:2012-04-15 出版日期:2012-08-12 网络出版日期:2012-05-11
  • 通讯作者: 阚建全, E-mail:ganjq1965@163.com, Tel:023-65250375; 李超, E-mail: gzlichao@126.com, Tel: 0851-3762995
  • 基金资助:

    本研究由国家科技部农业科技成果转化项目(2009GB2F200334), 国家现代农业产业体系建设项目(CARS-14-贵州综合试验站), 贵州省农业科技支撑项目(黔科合NY字[2011]3015), 贵州省农业攻关项目(黔科合NY字[2009]3004), 贵州省创新能力建设项目(黔科合院所创新[2010]4002)和贵州省农科院专项资金项目(黔农科院院专项[2009]044号)资助。

Genetic Diversity of Peanut Landraces in Guizhou Province

LIN Mao1,2,LI Zheng-Qiang2,ZHENG Zhi-Hong2,LÜ Jian-Wei2,MA Tian-Jin2,LI Chao3,*,KAN Jian-Quan1,*   

  1. 1 College of Food Scienc,Southwest University,Chongqing 400716, China; 2 Institute of Crops Germplasm Resources of Guizhou, Guiyang 550006, China;
    3 Institute of Oil Crops of Guizhou Province, Guiyang 550006, China
  • Received:2011-12-16 Revised:2012-04-15 Published:2012-08-12 Published online:2012-05-11
  • Contact: 阚建全, E-mail:ganjq1965@163.com, Tel:023-65250375; 李超, E-mail: gzlichao@126.com, Tel: 0851-3762995

摘要: 为进一步了解贵州花生地方品种的遗传多样性,合理、高效利用花生资源,用50对SSR引物评价了贵州不同地理来源的68份花生地方品种,结果多态性较好的41对引物共扩增出79个等位基因,平均每个引物1.93个;多态性信息量(PIC)变幅为0.045(PM43)~0.951(PM169);Shannon信息指数变幅为0.2518(PM79)~0.6926(PM188),平均0.5268;Nei遗传多样性指数变幅为0.1699(PM79)~0.4995(PM188),平均0.3556。采用类平均法对欧氏距离聚类分析表明,在遗传距离为0.94时将68个花生地方品种分成2个大类,同一地理来源、同一粒型的地方品种的亲缘关系并不是最近的,表明地方品种间亲缘关系与地理来源关系不大。说明贵州花生地方品种具有丰富遗传多样性。

关键词: 贵州地方品种, 花生, 遗传多样性

Abstract: In order to assess the genetic diversity of peanut in Guizhou province and provide a theoretical basis for breeding, 68 accessions of peanut landracescollected from Guizhou province were evaluated by 50 SSR markers. Seventy-nine alleles were amplified by forty-one polymorphic SSR primer pairs. The average number of alleles per locus was 1.93 with a range from 0.045 to 0.951. Total Shannon information index per locus varied widely from 0.2518 (PM79) to 0.6826 (PM188) with an average value of 0.5268; total Nei’s genetic diversity index per locus varied widely between 0.1699(PM79) and 0.4995 (PM188) with an average value of 0.3556. Cluster analysis with UPGMA showed that the landraces could be divided into two groups and the genetic relationship among materials with similar seed sizes was not in accord with their geographical origins. The peanut landrace in Guizhou showed higher genetic diversity.

Key words: Guizhou landrace, Peanut, Genetic diversity

[1]Shandong Peanut Research Institute(山东花生研究所). Peanut Cultivation in China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 1982. pp 7–8 (in Chinese)

[2]Li Z-Q(李正强). The dissemination and application of new peanut varieties bred in Guizhou. J Peanut Sci (花生学报), 2003, 32(4): 27–30 (in Chinese with English abstract)

[3]Subramanian V, Gurtu S, Rao R C N, Nigam S N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 2000, 43: 656–660

[4]Tang R H, Gao G Q, He L Q, Han Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang J, Li Y R, Zhuang W J. Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom, 2007, 34: 449–459

[5]Han Z-Q(韩柱强), Gao G-Q(高国庆), Wei P-X(韦鹏宵), Tang R-H(唐荣华), Zhong R-C(钟瑞春). Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using micro-satellite markers. Acta Agron Sin (作物学报), 2004, 30(11): 1097–1101 (in Chinese with English abstract)

[6]Hong Y-B(洪彦彬), Liang X-Q(梁炫强), Chen X-P(陈小平), Lin K-Y(林坤耀), Zhou G-Y(周桂元), Li S-X(李少雄), Liu H-Y(刘海燕). Genetic differences in peanut cultivated types (Arachis hypogaea L.) revealed by SSR polymorphism. Mol Plant Breed (分子植物育种), 2008, 6(1): 71–78 (in Chinese with English abstract)

[7]Naito Y, Suzuki S, I wata Y, Kuboyama T. Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci, 2008, 58(3): 293–300

[8]Jiang H F, Liao B S, Reng X P, Lei Y, Mace E, Fu T D, Crouch J H. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacteria wilt through SSR and AFLP analyses. J Genet Genom, 2007, 34: 544–554

[9]He G H, Channapatna P. Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol, 2001, 48: 347–352

[10]He G H, Meng R H, Gao H, Guo B Z, Gao G Q, Melanie N, Roy N P, and Prakash C. S. Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica, 2005, 142: 131–136

[11]Chen B-Y(陈本银), Jiang H-F(姜慧芳), Liao B-S( 廖伯寿), Ren X-P(任小平), Huang J-Q(黄家权), Lei Y(雷永), Wang S-Y(王圣玉). Genetic diversity analysis of arachis gerplasm by SSR. J Trop Subtrop Bot (热带亚热带植物学报), 2008, 16(4): 296–303 (in Chinese with English abstract)

[12]Jiang H-F(姜慧芳), Ren X-P(任小平), Liao B-S(廖伯寿), Huang J-Q(黄家权), Lei Y(雷永), Chen B-Y(陈本银), Holbpook C C, Upachyaya H D. Peanut core collection established in china and compared with ICRISAT mini core collection. Acta Agron Sin (作物学报), 2008, 34(1): 25–30 (in Chinese with English abstract)

[13]Jiang H-F(姜慧芳), Ren X-P(任小平), Zhang X-J(张晓杰), Huang J-Q(黄家权), Wang S-Y(王圣玉), Lei Y(雷永), Yan L-Y(晏立英), Liao B-S(廖伯寿). Genetic diversity of peanut mini core collection detected by SSR markers. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32( 4): 472–478 (in Chinese with English abstract)

[14]Jiang H-F(姜慧芳), Ren X-P(任小平), Zhang X-J(张晓杰), Huang J-Q(黄家权), Lei Y(雷永), Yan L-Y(晏立英), Liao B-S(廖伯寿), Upachyaya H D, Holbpook C C. Comparison of genetic diversity between peanut mini core collections from China and ICRISAT by SSR markers. Acta Agron Sin (作物学报), 2010, 36(7): 1084–1091 (in Chinese with English abstract)

[15]Jiang H-F(姜慧芳), Ren X-P(任小平), Chen Y-N(陈玉宁), Zhang X-J(张晓杰), Huang J-Q(黄家权), Liao B-S(廖伯寿). Comparison of genetic diversity between landraces and breeding varieties in Chinese peanut mini core collection by SSR markers. Acta Bot Boreali-Occident Sin (西北植物学报), 2011: 31(8): 1551–1559 (in Chinese with English abstract)

[16]Chen J(陈静), Hu X-H(胡晓辉), Miao H-R(苗华荣), Shi Y-Q(石运庆), Chi Y-C(迟玉成), Cui F-G(崔凤高), Wu L-R(吴兰荣), Yu S-L(禹山林). SSR-based analysis of genetic diversity of peanut (Arachis hypogaea L.) varieties from the region tests of Shandong province. Chin Agric Sci Bull (中国农学通报), 2008, 1(24): 105–110 (in Chinese with English abstract)

[17]Wang L-L(王丽丽), Li S-X(李尚霞), Wang Y-F(王月福). Genetic diversity of Shandong peanut popularized in different times by coefficient of parentage. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(1): 46–50 (in Chinese with English abstract)

[18]Krishna G K, Zhang J, Burow M, Pittman R N, Delikostadinov S G, Lu Y Z, Puppala N. Genetic diversity analysis in peanut (Arachis hypogaea L.) using microsatellite markers. Cell Mol Biol Lett, 2004, 9: 685–697

[19]Ferguson M E, Bramel P J, Chandra S. Gene diversity among botanical varieties in peanut (Arachis hpogaea L.). Crop Sci, 2004, 44: 1847–1854

[20]Tang R-H(唐荣华), He L-Q(贺梁琼), Zhuang W-J(庄伟建), Hang Z-Q(韩柱强), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), Gao G-Q(高国庆), Li Z(李忠). Phylogenetic relationships in the genus Arachis based on SSR molecular marker profiles. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 142–147 (in Chinese with English abstract)

[21]Zhang J-C(张建成), Wang C-T(王传堂), Yang X-D(杨新道). SSR and STS polymorphisms in seed testing for peanut cultivars. J Plant Genet Resour (植物遗传资源学报), 2006, 7(2): 215–219 (in Chinese with English abstract)

[22]Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5269–5273

[23]Yin D-M(殷冬梅), Wang Y(王允), Shang M-Z(尚明照), Cui D-Q(崔党群). Genetic diversity analysis of peanut genotypes based on molecular markers. Sci Agric Sin (中国农业科学), 2010, 43(11): 2220–2228 (in Chinese with English abstract)

[24]Jiang H-F(姜慧芳), Ren X-P(任小平), Zhang X-J(张晓杰), Huang J-Q(黄家权), Lei Y(雷永), Yan L-Y(晏立英), Liao B-S(廖伯寿). Comparison of genetic diversity between peanut mini core collections from china and ICRISAT by SSR markers. Acta Agron Sin (作物学报), 2010, 36(7): 1084–1091 (in Chinese with English abstract)

[25]Chen J(陈静), Hu X-H(胡晓辉), Miao H-R(苗华荣), Shi Y-Q(石运庆), Yu S-L(禹山林). Analysis of genetic diversity of peanut (Arachis hypogaea L.) varieties under the region tests of north China based on SSR marker. J Plant Genet Resour (植物遗传资源学报), 2009, 10(3): 360–366 (in Chinese with English abstract)

[26]Hu X-H(胡晓辉), Wu L-R(吴兰荣), Miao H-R(苗华荣), Shi Y-Q(石运庆), Cui F-G(崔凤高), Chen J(陈静). Genetic diversity of 33 peanut varieties. J Peanut Sci (花生学报), 2010, 39 (2): 24–28 (in Chinese with English abstract)

[27]Wang C-T(王传堂), Yang X-D(杨新道), Yu X(于翔), Zhang J-C(张建成), Liu G-Z(刘光臻), Xu J-Z(徐建芝). Utilization of DNA molecular marker technology in the discrimination of peanut cultivars. Acta Agric Boreali-Sin (华北农学报), 2006, 21: 110–113 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!