欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2170-2177.doi: 10.3724/SP.J.1006.2012.02170

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

12个外来玉米群体与我国主要种质配合力效应和杂种优势分析

王建军1,2,3,雍洪军2,张晓聪2,李明顺2,张德贵2,白丽2,高志强1,*,张世煌2,李新海2,*   

  1. 1 山西农业大学农学院, 山西太谷 030801; 2中国农业科学院作物科学研究所 / 作物分子育种国家工程实验室, 北京 100081; 3山西省农业科学院玉米研究所, 山西忻州 034000
  • 收稿日期:2012-05-31 修回日期:2012-09-05 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 李新海, E-mail: Lixh@mail.caas.net.cn, Tel: 010-82108598; 高志强, Email: gaozhiqiang164@126.com, Tel: 0354-6288373
  • 基金资助:

    本研究由国家现代农业产业技术体系项目(CARS-02-02)资助。

Combining Ability and Heterosis Effects between 12 Exotic Maize Populations and Domestic Germplasm

WANG Jian-Jun1,2,3,YONG Hong-Jun2,ZHANG Xiao-Cong2,LI Ming-Shun2,ZHANG De-Gui2,BAI Li2,GAO Zhi-Qiang1,*,ZHANG Shi-Huang2,LI Xin-Hai2,*   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory of Crop Molecular Breeding, Beijing 100081, China; 3 Maize Research Institute, Shanxi Academy of Agricultural Sciences, Xinzhou 034000, China
  • Received:2012-05-31 Revised:2012-09-05 Published:2012-12-12 Published online:2012-10-08
  • Contact: 李新海, E-mail: Lixh@mail.caas.net.cn, Tel: 010-82108598; 高志强, Email: gaozhiqiang164@126.com, Tel: 0354-6288373

摘要:

国际玉米小麦改良中心(CIMMYT)和美国玉米带种质含有丰富的遗传变异, 是拓展我国玉米种质基础的重要来源。本文采用NCII遗传交配设计, 以中综5号、中综6号和中综7号综合种为测验种, 12个外来群体配制36个组合。以郑单958为对照, 2009—2010年分别在北京顺义、山东济南和河南新乡进行产量及相关性状测定。利用Miranda Filho-Geraldi模型, 评价外来群体主要性状配合力效应及杂种优势表现。结果表明, Pob43La PostaPob21Pob32Pob49Pob501等群体的产量及相关性状GCA表现优良。群体Pob49Pob501与我国PA种质, Pob32BS29与我国PB种质, Pob43La posta与我国D群四平头种质的遗传关系较近。因此, 在改良外来群体适应性的基础上, 可以我国ABD类群种质为核心, 将群体Pob21Pob49Pob501A群种质, Pob32B群种质, Pob43La PostaD群的四平头种质构建复合种质并进行改良, 逐步拓宽我国主要种质类群的遗传基础。

关键词: 玉米, 一般配合力, 特殊配合力, 中亲杂种优势, 品种效应

Abstract:

The introgression of exotic maize (Zea mays L.) germplasm with abundant genetic variation from International Maize and Wheat Improvement Center (CIMMYT) and the United States could be an important approach for broadening the genetic basis of maize germplasm used in China. The objectives of this study were to evaluate combining ability and heterosis effects between exotic and domestic maize populations by Miranda Filho-Geraldi model. Twelve populations from the United States and CIMMYT were test-crossed with three domestic populations (Csyn 5, Csyn 6, and Csyn 7) in an NCII mating design. Thirty-six crosses and one commercial hybrid (Zhengdan 958) were evaluated in 2009 and 2010 at Shunyi in Beijing, Jinan in Shandong province, and Xinxiang in Henan province. The results showed that the populations Pob43, La Posta, Pob21, Pob32, Pob49, and Pob501 had a good performance in GCA of yield and related traits. Pob49 and Pob501 were closer to PA germplasm; Pob32 and BS29 were closer to PB germplasm; Pob43 and La posta were closer to Sipingtou germplasm. Therefore, on the based of exotic germplasm adaptation, we recommended to compose populations or composites between Pob21, Pob49, Pob501, and domestic heterotic group A, Pob32 and domestic heterotic group B, as well as Pob43, La Posta, and domestic heterotic group D germplasm, in order to broaden genetic basis of domestic germplasm groups.

Key words: Zea mays L, General combining ability, Special combining ability, Mid-heterosis, Variety effects

[1]Li X-H(李新海), Yuan L-X(袁力行), Li X-H(李晓辉), Zhang S-H(张世煌), Li M-S(李明顺), Li W-H(李文华). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci Agric Sin (中国农业科学), 2003, 36(6): 622–627 (in Chinese with English abstract)



[2]Yuan L-X(袁力行), Fu J-H(傅骏骅), Zhang S-H(张世煌), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Li X-H(李新海). Heterotic grouping of maize inbred lines using RFLP and SSR markers. Acta Agron Sin (作物学报), 2001, 27(2): 149–156 (in Chinese with English abstract)



[3]Zhang S H, Li X H, Peng Z B, Yuan L X. Heterotic groups and exploitation of heterosis-the methodology, strategy, and use in hybrid maize breeding in China. In: Proceedings of the 8th Asian Regional Maize Workshop. Bangkok, Thailand, 2002. pp 64–68



[4]Meng Y-J(孟义江), Yan J-B(严建兵), Teng W-T(滕文涛), Li J-S(李建生). Trends in genetic diversity among widely used inbreds from 1991 to 2001 in China and application of three major germplasm groups in maize breeding. Sci Agric Sin (中国农业科学), 2010, 43(4): 670–679 (in Chinese with English abstract)



[5]Tallury S P, Goodman M M. Experimental evaluation of the potential of tropical germplasm for temperate maize improvement. Theor Appl Genet, 1999, 98: 54–61



[6]Vasal S K, Srinivasan G, González F, Beck D L, Crossa J. Heterosis and combining ability of CIMMYT’s quality protein maize germplasm: II. Subtropical. Crop Sci, 1993, 33: 51–57



[7]Liang W-K(梁文科), Zhang S-H(张世煌), Qi T-X(戚廷香), Qiu F-Z(邱法展), Tuo H-Z(庹洪章), Liu Y-Z(刘永忠), Zheng Y-L(郑用琏). Dissection of heritability and genetic variance components for yield traits in tropical and temperate maize populations. Sci Agric Sin (中国农业科学), 2006, 39(11): 2178–2185 (in Chinese with English abstract)



[8]Zhang D-G(张德贵), Li X-H(李新海), Li M-S(李明顺), Xie C-X(谢传晓), Hao Z-F(郝转芳), Bai L(白丽), Zhang S-H(张世煌), Pan G-T(潘光堂). Direct selection response for flowering traits in four tropical and subtropical maize populations by mass selection. Acta Agron Sin (作物学报), 2010, 36(1): 28–35 (in Chinese with English abstract)



[9]Chen H-M(陈洪梅), Wang Y-F(汪燕芬), Yao W-H(姚文华), Luo L-M(罗黎明), Li J-L(李佳莉), Xu C-X(徐春霞), Fan X-M(番兴明), Guo H-C(郭华春). Utilization potential of the temperate maize inbreds integrated with tropical germplasm. Acta Agron Sin (作物学报), 2011, 37(10): 1785–1793 (in Chinese with English abstract)



[10]Li M-S(李明顺), Zhang S-H(张世煌), Pan G-T(潘光堂), Li X-H(李新海), Xia X-C(夏先春), Tian Q-Z(田清震), Bai L(白丽). Combining ability and heterotic grouping of CIMMYT subtropical quality protein maize lines. Sci Agric Sin (中国农业科学), 2005, 38(4): 671–677 (in Chinese with English abstract)



[11]Mungom C, Pollak L M. Heterotic patterns among ten Corn Belt and exotic maize populations. Crop Sci, 1988, 28: 500–504



[12]Melani M D, Carena M J. Alternative heterotic patterns for the northern Corn Belt. Crop Sci, 2005, 45: 2186–2194



[13]Rasmussen C C, Hallauer A R. Evaluation of heterotic patterns of Iowa Stiff Stalk Synthetic and Non-Stiff Stalk Synthetic maize populations. Maydica, 2006, 51: 177–186



[14]Scheffler T A, Hallauer A R, Lamkey K R, White P R. Estimates of heterosis and inbreeding depression for crosses of IOWA maize population. Maydica, 2008, 53: 189–198



[15]Hallauer A R, Carena M J. Maize breeding. In Carena M J ed. Handbook of Plant Breeding: Cereals. New York: Springer, 2009. pp 3–98



[16]Zhang S-H(张世煌), Peng Z-B(彭泽斌), Li X-H(李新海). Heterosis and germplasm enhancement, improvement and development of maize. Sci Agric Sin (中国农业科学), 2000, 33(suppl): 34–39 (in Chinese with English abstract)



[17]Miranda Filho J B, Gerald I O. An adapted model for the analysis of partial diallel crosses. Rev Bras Genet, 1984, 7: 677–688



[18]Morello C L, Miranda Filho J B, Gorgulho E P. Partial diallel cross between exotic and adapted maize populations evaluated in acid soil. Sci Agric, 2001, 58: 313–319



[19]Silva R M, Miranda Filho J B. Heterosis expression in crosses between maize populations: ear yield. Sci Agric (Piracicaba, Brazil), 2003, 60: 519–524



[20]Oliveira J P, Chaves L J, Duarte J B, Ribeiro K O, Brasil E M. Heterosis for oil content in maize populations and hybrids of high quality protein. Crop Breed Appl Biotechnol, 2006, 6: 113–120



[21]Torres E A, Geraldi I O. Partiall diallel analysis of agronomic characters in rice (Oryza sativa L.). Genet Mol Biol, 2007, 30: 605–613



[22]Guo P-Z(郭平仲). Analysis of Quantity Genetics (数量遗传分析). Beijing: Beijing Normal University Press, 1987 (in Chinese)



[23]Federer W T, Wolfinger R D. SAS Code for recovering intereffect information in experiments with incomplete block and lattice rectangle designs. Agron J, 1998, 90: 545–551



[24]Gardner C O, Eberhart S A. Analysis and interpretation of the variety cross diallel and related populations. Biometrics, 1966, 22: 439–452



[25]Vasal S K, Srinivasan G, Crossa J, Beck D L. Heterosis and combining ability of CIMMYT’s subtropical and temperate early maturity maize germplasm. Crop Sci, 1992, 32: 884–890



[26]Reif J C, Fischer S, Schrag T A, Lamkey K R, Klein D, Dhillon B S, Utz H F, Melchinger A E. Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theor Appl Genet, 2010, 120: 301–310



[27]Li X-H(李新海), Xu S-Z(徐尚忠), Li J-S(李建生), Liu J-L(刘纪麟). Heterosis among CIMMYT populations and Chinese key inbred lines in maize. Acta Agron Sin (作物学报), 2001, 27(5): 575–581 (in Chinese with English abstract)



[28]Yang A-G(杨爱国), Zhang S-H(张世煌), Li M-S(李明顺), Rong T-Z(荣廷昭), Pan G-T(潘光堂). Combining ability and heterosis of 14 CIMMYT and 13 domestic maize populations in an NCII mating design. Acta Agron Sin (作物学报), 2006, 32(9): 1329–1337 (in Chinese with English abstract)



[29]Yong H J, Wang J J, Liu Z P, Li M S, Zhang D G, Li X H, Zhang S H. Potential of tropical maize populations for improving an elite maize hybrid. Maydica, 2011, 56: 359–366



[30]Hallauer A R. Introgression of Elite Subtropical and Tropical Germplasm with U.S. Corn Belt Germlasm. North Central Regional Corn Breeding Meeting, American, 2003. http://corn2.agron.iastate.edu/ncr167/Abstracts/2003/Hallauer_2003_Abstract.pdf

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!