欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (12): 2278-2285.doi: 10.3724/SP.J.1006.2012.02278

• 耕作栽培·生理生化 • 上一篇    下一篇

施肥水平和种植密度对张杂谷5号产量及其构成要素的影响

杨艳君1,2,郭平毅1,*,曹玉凤2,王宏富1,王玉国1,原向阳1,邢国芳1,邵东红1,祁祥1,解丽丽1,聂萌恩1,郭俊1,宁娜1   

  1. 1 山西农业大学农学院, 山西太谷 030801; 2 山西省晋中学院生物科学与技术学院, 山西晋中 030600
  • 收稿日期:2012-04-19 修回日期:2012-08-15 出版日期:2012-12-12 网络出版日期:2012-10-08
  • 通讯作者: 郭平毅, E-mail: pyguo@sxau.edu.cn, Tel: 0354-6286938
  • 基金资助:

    本研究由山西省农业综合开发项目(201150-1/2), 山西省现代农业产业体系(谷子)项目和山西省科技攻关项目(20120311004-4)资助。

Effects of Fertilizer and Planting Density on Yield and Yield Components in Foxtail Millet Hybrid Zhangzagu 5

YANG Yan-Jun1,2,GUO Ping-Yi1,*,CAO Yu-Feng2,WANG Hong-Fu1,WANG Yu-Guo1,YUAN Xiang-Yang1,XING Guo-Fang1, SHAO Dong-Hong1,QI Xiang1,XIE Li-Li1,NIE Men-En1,GUO Jun1,NING Na1   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; 2 Bioengineering Institue of Jinzhong University, Jinzhong 030600, China
  • Received:2012-04-19 Revised:2012-08-15 Published:2012-12-12 Published online:2012-10-08
  • Contact: 郭平毅, E-mail: pyguo@sxau.edu.cn, Tel: 0354-6286938

摘要:

优质高产的杂交谷子为我国乃至世界的粮食保障提供了有力保障, 但良种需良法配套, 为此研究杂交谷的最佳栽培条件。采用5因素二次通用旋转组合设计, 探讨氮、磷、钾、行距和株距对张杂谷5号产量及其构成因素穗数、穗粒数、千粒重的影响。结果表明, 产量与穗数、穗粒数显著正相关, 而与千粒重无显著相关。氮、行距、磷、钾对产量和穗粒数有显著影响, 氮肥和行距影响较大, 而磷和钾肥影响较小。行距、株距和氮对穗数有显著影响, 随着施氮量的增加以及株距和行距的缩小, 穗数呈增加趋势。施磷水平对千粒重有显著影响, 随着施磷量的增加, 千粒重表现先升后降的趋势。在研究的5个因素中, 施氮水平、施钾水平以及株距之间交互作用对穗粒数和产量有显著影响;施氮水平与株距之间的交互作用对千粒重有显著影响。该5因素与产量间回归关系极显著, 拟合程度较高, 可用于实际生产预测。使张杂谷5号产量最大的农艺方案为N施用量186 kg hm–2, P2O5施用量95 kg hm–2, K2O施用量60 kg hm–2, 行距23 cm, 株距13 cm, 预期产量为6 683 kg hm–2

关键词: 杂交谷, 二次通用旋转组合设计, 施肥, 密度, 产量, 产量构成

Abstract:

Foxtail millet (Setaria italica L.) is of high nutritious value, which has been mostly used for foods in Africa and Asia or Central and South America. To investigate the effects of fertilizer and density on yield and yield components of Zhangzagu 5, we conducted an experiment based on quadratic general rotary unitized design with three replications. The results demonstrated that the yield was significantly positively correlated with ears per ha and grains per ear, but not with 1000-grain weight. The levels of nitrogen, phosphate and potassium and the row spacing all showed significant effects on grains per ear and yield, and the grains per ear and yield were mainly affected by nitrogen level and row spacing, and less affected by phosphate and potassium levels. Row spacing, plant spacing and nitrogen level had great effects on ears per ha, which was promoted with increasing N and decreasing row spacing and plant spacing. The effect of phosphate level on 1000-grain weight was evident, which had a trend from rising to declining with phosphate increasing. The interactions between nitrogen and potassium levels and plant spacing, and between potassium level and plant spacing showed significant effects on grains per ear and yield, while the interaction between nitrogen level and plant spacing showed great effect on 1000-grains weight. The interaction effects of other factors on the yield and yield components were not so obvious. Multivariate quadratic regression analysis indicated that the regression relationship between the levels of nitrogen, phosphate and potassium, row spacing, plant spacing and the yield of Zhangzagu 5, can be used for production forecasts. Here is the recommended cultivation conditions for Zhangzagu 5: 186 kg ha–1 for nitrogen level, 95 kg ha–1 for P2O5, 60 kg ha–1 for K2O, 23 cm for row spacing, 13 cm for plant spacing, and the expected yield is 6 683 kg ha–1. In conclusion, nitrogen, phosphate and potassium, row spacing, plant spacing and their interactions have certain effects on the ears per ha, grains per ear, 1000-grains weight and yield of Zhangzagu 5. Proper planting density and fertilization can successfully resolve the contradictions of ears per ha with grains per ear and 1000-grain weight, and increase yield.

Key words: Millet hybrid, Quadratic general rotary unitized design, Fertilizer, Density, Yield components

[1]Kasaoka S, Oh-hashi A, Morita T, Kiriyama S. Nutritional characterization of millet protein concentrates produced by a heat-stable α-amylase digestion. Nutr Res, 1999, 19: 899–910



[2]Antony U, Sripriya G, Chandra T S. The effect of fermentation on the primary nutrients in foxtail millet (Setaria italica). Food Chem, 1996, 56: 381–384



[3]Geervani P, Eggum B O. Nutrient composition and protein quality of minor millets. Plant Foods Human Nutr, 1989, 39: 201–208



[4]Zhang Z W, Qu J B, Xu G F, Song L H, Wang J J, Shimbo S, Watanabe T, Nakatsuka H, Higashikawa K, Ikeda M. Maize and foxtail millet as substantial sources of dietary lead intake. Sci Total Environ, 1997, 208: 81–88



[5]Yang Z-P(杨珍平), Zhang X-Y(张翔宇), Miao G-Y(苗果园). Effects of fertilizing on millet root-shoot growth, rhizospheric soil enzyme and microbe in immature soil in north China. Nucl Agric Sci (核农学报), 2010, 24(4): 802–808 (in Chinese with English abstract)



[6]Li S-T(李书田), Zhao M(赵敏), Liu B(刘斌), Chai X-J(柴晓娇), Zhang L-Y(张立媛), Li Y-H(李艳红). Multiple factorial experiments on the sowing data, density and fertilizer of new millet varieties. Inner Mongolia Agric Sci Technol (内蒙古农业科技), 2010(3): 33–34 (in Chinese with English abstract)



[7]Kowalski J. Optimal estimation in rotation patterns. J Statist Plan Infer, 2009, 139: 1405–1420



[8]Liu Z-L(刘正理), Cheng R-H(程汝宏), Zhang F-L(张凤莲), Xia X-Y(夏雪岩), Shi Z-G(师志刚), Zhang Y-H(张耀华). Yield and yield component characteristics of three foxtail millet varieties at different planting densities. Chin J Eco-Agric (中国生态农业学报), 2007, 15(5): 135–138 (in Chinese with English abstract)



[9]Fan J-B(范静波), Yang L-F(杨潞芳), Yang P-H(杨鹏辉). Effect of potassium fertilizer on millet development and yield. J Shanxi Agric Sci (山西农业科学), 2003, 31(2): 41–43 (in Chinese with English abstract)



[10]Xi G-S(奚广生), Wang Y-L(王艳玲). Study on fertilization technology of millet. J Anhui Agric Sci (安徽农业科学), 2008, 36(24): 10549–10550 (in Chinese with English abstract)



[11]Rong T-Z(荣廷昭). Field Experimentation and Statistical Analysis (田间试验与统计分析). Beijing: Agricultural Science and Technology Press, 1998. pp 299–301 (in Chinese)



[12]Lu E-S(卢恩双), Song S-D(宋世德), Guo M-C(郭满才). Problem in second-order regression general rotation analysis. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报•自然科学版), 2002, 30(5): 110–113 (in Chinese with English abstract)



[13]Tian B-H(田伯红), Xu Y-P(徐玉鹏), Li G-R(李桂荣), Zhang L-X(张立新), Li Y-J(李雅静), Zhao Z-X(赵忠祥), Liu Q-F(刘全凤). Studies on grey correlative analysis for the evolution of agronomic characters of millet. J Hebei Agric Sci (河北农业科学), 2004, 8(3): 50–52 (in Chinese with English abstract)



[14]Yang J-C(杨建昌), Wang P(王朋), Liu L-J(刘立军), Wang Z-Q(王志琴), Zhu Q-S(朱庆森). Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. Acta Agron Sin (作物学报), 2006, 32(7): 949–955 (in Chinese with English abstract)



[15]Xue Y-G(薛亚光), Chen T-T(陈婷婷), Yang C(杨成), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effects of different cultivation patterns on the yield and physiological characteristics in mid-season japonica rice. Acta Agron Sin (作物学报), 2010, 36(3): 466–476 (in Chinese with English abstract)



[16]Wang H-T(王宏庭), Jin J-Y(金继运), Wang B(王斌), Zhao P-P(赵萍萍). Effects of long-term potassium application and wheat straw return to cinnamon soil on wheat yields and soil potassium balance in Shanxi. Plant Nutr Fert Sci (植物营养与肥料学报), 2010, 16(4): 801–808 (in Chinese with English abstract)



[17]Baethgen W E, Christianson C B, Lamothe A G. Nitrogen fertilizer effects on growth, grain yield, and yield components of malting barely. Field Crops Res, 1995, 43: 87–99



[18]Guo S-L(郭胜利), Dang T-H(党庭辉), Hao M-D(郝明德). Effects of fertilization on wheat yield, NO3-N accumulation and soil water content in semi-arid area of China. Sci Agric Sin (中国农业科学), 2005, 38(4): 754–760 (in Chinese with English abstract)



[19]Lewandowski I, Kauter D. The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind Crops Prod, 2003, 17(2): 103–117



[20]Wan L-J(万靓军), Zhang H-C(张洪程), Huo Z-Y(霍中洋), Lin Z-C(林忠成), Dai Q-G(戴其根), Xu K(许轲), Zhang J(张军). Effects of nitrogen application regimes on yield, quality and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin (作物学报), 2007, 33(2): 175–182 (in Chinese with English abstract)



[21]Sharma A R, Mittra B N. Effect of combination of organic materials and nitrogen fertilizer on growth, yield and nitrogen uptake of rice. J Agric Sci, 1988, 111: 495–501



[22]Tan D S, Jin J Y, Huang S W, Li S T, He P. Effect of long-term Application of K fertilizer and wheat straw to soil on crop yield and soil K under different planting systems. Agric Sci China, 2007, 6(2): 200–207



[23]Sheehy J E, Mitchell P L, Kirk G J D, Ferrer A B. Can smarter nitrogen fertilizers be designed? Matching nitrogen supply to crop requirements at high yields using a simple model. Field Crops Res, 2005, 94: 54–66



[24]Kunzova E, Hejcman M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crops Res, 2009, 111: 226–234



[25]Xue Y-W(薛盈文), Yu L-H(于立河), Guo W(郭伟). Effects of collocation of spacing form, fertilizer and density on yield and quality of spring wheat. J Triticeae Crops (麦类作物学报) 2008, 28(5): 873–876 (in Chinese with English abstract)



[26]Cao Q(曹倩), He M-R(贺明荣), Dai X-L(代兴龙), Men H-W(门洪文), Wang C-Y(王成雨). Effects of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutr Fert Sci (植物营养与肥料学报), 2011, 17(4): 815–822 (in Chinese with English abstract)

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!