欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 34-42.doi: 10.3724/SP.J.1006.2013.00034

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉属野生种旱地棉蛋白激酶基因GarCIPK8的克隆与功能分析

冯娟,范昕琦,徐鹏,张香桂,沈新莲*   

  1. 江苏省农业科学院经济作物研究所 / 农业部长江下游棉花与油菜重点实验室, 江苏南京210014
  • 收稿日期:2012-04-18 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 沈新莲, E-mail: shenxinlian@yahoo.com.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育重大专项(2011ZX08005-004-002)和江苏省农业科技自主创新基金[CX(11)1201]资助。

Isolation and Functional Analysis of GarCIPK8 Gene from Gossypium aridum

FENG Juan,FAN Xin-Qi,XU Peng,ZHANG Xiang-Gui,SHEN Xin-Lian*   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Nanjing 210014, China
  • Received:2012-04-18 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-14
  • Contact: 沈新莲, E-mail: shenxinlian@yahoo.com.cn

摘要:

CIPK (calcineurin B-like calcium sensor interacting protein kinase)是植物钙感受器钙调磷酸酶B类似蛋白特定靶向的一类丝氨酸/苏氨酸蛋白激酶。在前期的研究中, 我们将棉属野生种D亚组旱地棉(Gossypium aridum)盐胁迫前后RNA混合样品进行转录组测序, 发现一CIPK相关基因存在较高的转录丰度。盐胁迫下荧光定量PCR分析表明该基因在根部表现诱导上调表达, 推测该基因可能参与植物在高盐胁迫下的生理调控。利用电子克隆及RT-PCR方法从旱地棉中克隆了一个ORF全长为1350 bp的蛋白激酶基因GarCIPK8。序列分析表明该基因编码的蛋白含有449个氨基酸, 分子量为51.12 kD, 理论等电点为8.13, N端催化结构域包含一个丝氨酸/苏氨酸蛋白激酶域, C端具有植物CIPK蛋白家族特有的24个氨基酸组成的NAF保守结构域; 与水稻OsCIPK8蛋白的相似度为73.95%。为进一步验证其功能, 利用组成型高效强启动子CaMV35S和拟南芥逆境胁迫启动子rd29A构建植物表达载体并转化烟草, PCRRT-PCR分子检测, 证明GarCIPK8基因已经整合到烟草基因组中, 并正常表达。T1代转基因植株耐盐性鉴定结果表明GarCIPK8基因对提高转基因植株的耐盐性有较明显的作用, PEG干旱模拟试验也证明GarCIPK8基因可增强植株的抗旱性。

关键词: 旱地棉, GarCIPK8, 耐盐性, 耐旱性

Abstract:

CIPK (calcineurin B-like calcium sensor interacting protein kinase) is a typical group of serine / threonine protein kinase targeting calcium sensor calcineurin B-like protein-specific. In a previous study, we obtained the transcriptome of Gossypium aridum with a pooled RNA sample from root and leaf of G. aridum under salt stress. From the transcriptome data, we founded that a CIPK related gene had high level of expression abundance. Real-time fluorescence quantitative PCR analysis showed its relative expression level was up-regulated in root induced by salt stress, indicating this CIPK related gene might be involved in response to salt stress during cotton seedling stage. By in silico cloning and RT-PCR technology, a full-length cDNA encoding a CIPKs homologue (GarCIPK8) was isolated from G. aridum. The deduced GarCIPK8 protein had 449 amino acids with a predicted molecular weight of 51.12 kD and a predicted isoelectric point of 8.13. The kinase N-terminal catalytic domain of GarCIPK8 exhibited a typica1 serine / threonine protein kinase domain. The conserved 24 amino acid motif existed in C-terminal non-kinase regions of GarCIPK8 protein. Alignment of amino acid sequence showed that GarCIPK8 was 73.95% identical to Oryza sativa OsCIPK8 protein. In order to characterize its putative function, the GarCIPK8 gene driven by CaMV35S promoter and stress-specific promoter rd29A respectively were transformed into tobacco by Agrobacterium-mediated transgenic technology. PCR and RT-PCR detection confirmed that GarCIPK8 gene was integrated into tobacco genome and expressed normally. The growth of transgenic plants of T1 generation was observed under salinity and drought stresses, showing that transgenic plants enhance tolerance to both high salt and osmotic stresses.

Key words: Gossypium aridum, GarCIPK8, Salt stress, Drought stress

[1]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273



[2]Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol, 2006, 57: 781–803



[3]Albrecht V,Weinl S, Blazevic D, D’Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36: 457–470



[4]Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell, 1999, 11: 691–70



[5]Kolukisaoglu U, Weinl S, Blazevie D, Batistie O, Kudla J. Caleium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43–58



[6]Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophy Acta, 2009, 1793: 985–992



[7]Luan S. The CBL-CIPK network in plant calcium signaling. Trends Plant Sci, 2009, 14: 37–42



[8]Batistic O, Kudla J. Intergration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219: 915–92



[9]Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J, 2001, 20: 1051–1063



[10]Yu Y, Xia X, Yin W, Zhang H. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul, 2007, 52: 101–110



[11]Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416–1428



[12]Li L, Kim B G, Cheong Y H, Pandey G K, Luan S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 2006, 103: 12625–12630



[13]Mahajan S, Sopory S, Tuteja N. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J, 2006, 273: 907–925



[14]Martinez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012



[15]Li F-Z(李付振), Qiu X-M(邱新棉), Wang M-X(王美兴), Liu C-L(刘传亮). Molecular cloning and expression analysis of two splice forms of the protein phosphorylation homologous gene (GhSOS2) during the salt stress pathway in cotton. Sci Agric Sin (中国农业科学), 2010, 43(21): 4341–4348 (in Chinese with English abstract)



[16]Gao P, Zhao P M, Wang J, Wang H Y, Wu X M, Xia G X. Identification of genes preferentially expressed in cotton fibers: a possible role of calcium signaling in cotton fiber elongation. Plant Sci, 2007, 173: 61–69



[17]Huang Q S, Wang H Y, Gao P, Wang G Y, Xia G X. Clong and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep, 2008, 27: 1869–1875



[18]Tu Y-L(涂礼莉), Zhang X-L(张献龙), Liu D-Q(刘迪秋), Jin S-X(金双侠), Cao J-L(曹景林), Zhu L-F(朱龙付), Deng F-L(邓锋林), Tan J-F(谭家富), Zhang C-B(张存斌). Reference gene selection in cotton fiber development and somatic embryogenesis process in real-time quantitative reverse transcription PCR. Chin Sci Bull (科学通报), 2007, 52(20): 2379–2380 (in Chinese)



[19]Hu R-B(胡瑞波), Fan C-M(范成明), Fu Y-F(傅永福). Reference gene selection in plant real-time quantitative reverse transcription PCR (qRT-PCR). J Agricl Sci Technol (中国农业科技导报), 2009, 11(6): 30–36 (in Chinese with English abstract)



[20]Kenneth J, Thomas D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[21]Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation responsive rd29A gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Genet Genom, 1993, 236: 331–340



[22]Wang G-L(王关林), Fang H-J(方宏筠). Plant Genetic Engineering Principle and Technique (植物基因工程原理). Beijing: Science Press, 2002. pp 428–432 (in Chinese)



[23]Zhao J F, Sun Z F, Zheng J, Dong X Y, Huai J L, Gou M Y, He J G, Jin Y S, Wang J H. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol, 2009, 69: 661–674



[24]Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416–1428



[25]Quintero F J, Ohta M, Shi H, Zhu J K, Pardo J M. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA, 2002, 99: 9061–9066



[26]Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Prog Nat Sci, 2009, 19: 667–676



[27]Sanders D, Pelloux J, Brownlee C, Harper J F. Calcium at the cross-roads of signaling. Plant Cell, 2002 , 14: 401–417



[28]Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for caleineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA, 1999, 96: 4718–4723



[29]Kim B G, Waadt R, Cheong Y H, Pandey G K, Jose R, Domingguez-Solis, Schultke S, Lee S C, Kudla J, Luan S. The caleiumsensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J, 2007, 52: 473–484



[30]Pandey G K, Cheong Y H, Kim K N, Grant J J, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. The Calcium sensor calcineurin B-Like 9 modulates abscisic acid aensitivity and biosynthesis in Arabidopsis. Plant Cell, 2004, 16: 1912–1924



[31]Cheng N H, Pittman J K, Zhu J K, Hirschi K D. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem, 2004, 279: 2922–2926



[32]Guo Y, Halfter U, Ishitani M, Zhu J K. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 1383–1400



[33]Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436–8441



[34]Xu J, Li H D, Chen L Q, Wang Y, Liu L L, He L, Wu W H. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125: 1347–1360



[35]Martínez-Atienza J, Jiang X Y, Garciadeblas B, Mendoza I, Zhu J K, Pardo J M, Quintero F J. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143: 1001–1012



[36]Xiang Y, Huang Y M, Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144: 1416–1428



[37]Chen X-F(陈析丰), Gu Z-M(顾志敏), Liu F(刘峰), Ma B-J(马伯军), Zhang H-S(张红生). Molecular analysis of rice CIPKs involved in biotic and abiotic stress responses. Chin J Rice Sci, 2010, 24: 567–574 (in Chinese with English abstract)



[38]Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124: 1854–1865



[39]Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104–106



[40]Li X-L(李新玲), Yang C-P(杨传平), Qu M(曲敏), Xu X-L(徐香玲). Study on cloning of rd29A promoter and enhancing stress tolerance of tobacco. Mol Plant Breed, 2007, 5: 37–42 (in Chinese with English abstract)



[41]Bai B(白斌), Zhang J-W(张金文), Guo Z-H(郭志鸿), Chen Z-H(陈正华). Cloning cold-induced promoter rd29A and its responsibility to low temperature. J Gansu Agric Univ (甘肃农业大学学报), 2004, 39(3): 249–254 (in Chinese with English abstract)



[42]Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, and Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotech, 1999, 17: 287–291



[43]Zhang J-L(张俊莲), Wang L(王丽), Qin S-H(秦舒浩), Si H-J(司怀军), Liu Y-H(刘玉汇), Wang D(王蒂). The AtNHX1 Gene drive n by stress-inducible rd29A promoter from Arabidopsis thaliana can increase tobacco saline tolerance. J Agric Biotechnol (农业生物技术学报), 2011, 9(4): 669–676 (in Chinese with English abstract)

[1] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[4] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究[J]. 作物学报, 2020, 46(9): 1351-1358.
[5] 宝力格,陆平,史梦莎,许月,刘敏轩. 中国高粱地方种质芽期苗期耐盐性筛选及鉴定[J]. 作物学报, 2020, 46(5): 734-744.
[6] 刘谢香,常汝镇,关荣霞,邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(01): 1-8.
[7] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[8] 余斌,杨宏羽,王丽,刘玉汇,白江平,张峰,王蒂,张俊莲. 马铃薯冠气温差变化特性与耐旱性的关系[J]. 作物学报, 2018, 44(7): 1086-1094.
[9] 万丽丽, 王转茸, 辛强, 董发明, 洪登峰, 杨光圣. BnA7HSP70分子伴侣结合蛋白超表达能够提高甘蓝型油菜耐旱性[J]. 作物学报, 2018, 44(04): 483-492.
[10] 李国君,马艺文,徐丹阳,吴永波,宋洁,王楠,郝转芳,赵娟. 玉米SNAC基因的遗传变异及耐旱性调控[J]. 作物学报, 2017, 43(08): 1128-1138.
[11] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[12] 吕品,于海峰,于志贤,张永虎,张艳芳,王婷婷,侯建华. 向日葵高密度遗传连锁图谱构建及两种水分条件下芽期性状的QTL分析[J]. 作物学报, 2017, 43(01): 19-30.
[13] 冯露,钟理,陈丹丹,马有志,徐兆师,李连城,周永斌,陈明,张小红. 过表达谷子液泡H+-ATPase E亚基基因在拟南芥中的耐盐性[J]. 作物学报, 2015, 41(11): 1682-1691.
[14] 李倩,王景一,毛新国,李昂,高丽锋,刘惠民,景蕊莲. 小麦脂质转运蛋白基因TaLTP克隆及功能分析[J]. 作物学报, 2015, 41(05): 673-682.
[15] 王小丽,杜建中,郝曜山,张丽君,赵欣梅,王亦学,孙毅. BADH基因玉米植株的获得及其耐盐性分析[J]. 作物学报, 2014, 40(11): 1973-1979.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!