欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (06): 992-998.doi: 10.3724/SP.J.1006.2013.00992

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶片灰白转黄突变体pyr1的鉴定与基因定位

程欣,任德勇,马娇,朱晓燕,桑贤春,凌英华,赵芳明,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市市级重点实验室 / 南方山地农业教育部工程研究中心,重庆 400716
  • 收稿日期:2012-11-12 修回日期:2013-01-15 出版日期:2013-06-12 网络出版日期:2013-03-22
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A100),国家自然科学基金项目(31171178)和重庆市攻关项目(CSTC, 2012ggc8002)资助。

Identification and Gene Mapping of Leaf Pale Yellow-Revertible Mutant pyr1 in Rice

CHENG Xin,REN De-Yong,MA Jiao,ZHU Xiao-Yan,SANG Xian-Chun,LING Ying-Hua,ZHAO Fang-Ming,HE Guang-Hua*   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China?
  • Received:2012-11-12 Revised:2013-01-15 Published:2013-06-12 Published online:2013-03-22

摘要:

鉴定和克隆叶色突变基因对于深入了解叶绿素合成、降解途径的关系以及植物的光合作用有着重要的作用。从EMS诱变恢复系缙恢10号后代中鉴定出1个灰白转黄突变体pyr1,该突变体在苗期部分死亡,整张叶片呈现灰白色,在不同的生育时期叶片呈现不同的颜色,直到孕穗期叶片上部和叶缘表现黄色。苗期到抽穗期突变体叶绿素含量比野生型显著或极显著降低。透射电镜观察表明,突变体与野生型细胞结构无明显差异,但叶绿体发育异常,内部大量降解,基质片层退化。遗传分析表明该性状受1对隐性基因控制,利用326F2隐性定位群体将PYR1基因定位在第1染色体长臂上,位于标记RM11722Ind1之间,物理距离约92 kb,本研究为PYR1基因的图位克隆奠定了基础。

关键词: 灰白叶, 水稻(Oryza sativa L.), 叶绿体, 基因定位

Abstract:

It is important for the further understanding of the relationship between chlorophyll synthesis and degradation pathways and plant photosynthesis to identify and clone leaf color mutant gene. A leaf pale yellow-revertible mutant temporarily designated as pyr1 was obtainted from the progeny of rice (Oryza sativa L.) restorer line Jinhui 10 which was induced by ethyl methane sulfonate (EMS). In the seedling stage, the whole leaf of mutants presented pale and some mutants died. The pyr1 displayed different colors in different growth periods. At the booting stage upper-leaf and leaf margin exhibited yellow. Compared with the wild type, the chlorophyl contents of pyr1 mutant decreased from seedling stage to filling stage. Transmission electronic microscopy observation showed that the structure of cells had no obvious differences between mutant and wild type, but the chloroplast developed abnormally with degradation of the inside and matrix slices. Genetic analysis revealed that the trait was controlled by one recessive gene. With 326 recessive individuals from the F2 segregation population, the PYR1 gene was finally mapped between RM11722 and Ind1 on the long arm of chromosome 1, with an approximate physical distance of 92 kb. These results provide a basis of PYR1 gene cloning by map-based strategy.

Key words: Pale leaf, Rice (Oryza sativa L.), Chloroplast, Gene location

[1]Victor I K, Fabienne P C, Michel H, Pascale C D, Danja S, Karin M, Patrice G, Jonathan D G J, Neil E H, Laurent N. A chromodomain protein encoded by the arabidopsis CAO gene is a plant-specific component of the chloroplast signal recognition particle pathway that is involved in LHCP targeting. Plant Cell, 1999, 1: 87−99



[2]Chen G, Bi Y R, Li N. EGY1 encodes a membrane-associated and ATP-independent metalloprotease that is required for chloroplast development. Plant J, 2005, 41: 364−375



[3]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47−56



[4]Aluru M R, Rodermel S R. Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant, 2004, 120: 4−11



[5]Xing C, Wang G X, Huang J L, Wu J Z. Research on chlorophyll mutation of plants and molecular mechanism. Biotechnol Bull, 2008, 5: 10−12



[6]Zhao Y, Wang M L, Zhang Y Z, Du L F, Pan T. A chlorophyll-reduced seedling mutant in oil seed rape Brassica napus for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131−135



[7]Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science, 1995, 270: 1986−1988



[8]Fambrini M, Castagna A, Vecchia F D. Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced PS II activity and low endogenous level of abscisic acid. Plant Sci, 2004, 167: 79−89



[9]Parks B M, Quail P H. Phytochrome-deficient hy1 and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell, 1991, 3: 1177−1186



[10]Agrawal G K, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene. Plant Physiol, 2001, 125: 1248−1257



[11]Singh U P, Prithiviraj B, Sarma B K. Development of Erysiphe pisi (powdery mildew) on normal and albino mutants of pea (Pisum sativum L.). J Phytopathol, 2000, 148: 591−595



[12]Honeycut R J, Newhouse K E, Palmer R G. Inheritance and linkage studies of a variegated leaf mutant in soybean. J Hered, 1990, 81: 123−126



[13]Oki S, Gu X, Kofoid K D, Liang G H. A light-intensity sensitive chlorophyll mutant in sorghum. Hereditas, 1997, 126: 239−245



[14]Highkin H R. Chlorophyll studies on barley mutants. Plant Physiol, 1950, 25: 294−306



[15]Wang C, He B, Xun M, Wan J. Tagging and mapping of a gene controlling yellowish-green leaf. Rice Genet Newsl, 2003, 20: 35



[16]Wang J(王军), Wang B-H(王宝和), Zhou L-H(周丽慧), Xu J-F(徐洁芬), Gu M-H(顾铭洪), Liang G-H(梁国华). Genetic analysis and molecular mapping of a new yellow-green leaf gene ygl-2 in rice. Chin J Rice Sci (中国水稻科学), 2006, 20(5): 455−459 (in Chinese with English abstract)



[17]Huang X-Q(黄晓群), Wang P-R(王平荣), Zhao H-X(赵海新), Deng X-J(邓晓建). Genetic analysis and molecular mapping of a novel chlorophyll-deficit mutant gene in rice. Chin J Rice Sci (中国水稻科学), 2007, 21(4): 355−359 (in Chinese with English abstract)



[18]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463−472



[19]Lee S, Kim J H, Eun S Y, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57: 805−818 



[20]Wu Z M, Zhang X, He B. A chlorophyll-deficient rice mutant with impaired chorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29−40



[21]Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol, 1987, 48: 350−382



[22]He R-F(何瑞峰), Ding Y(丁毅), Yu J-H(余金洪), Zu M-S(祖明生). Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res (武汉植物学研究), 2001, 19(1): 1−5 (in Chinese with English abstract)



[23]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832



[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325



[25]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing) (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)



[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607



[27]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181



[28]Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 1944, 12: 172–175



[29]Gustafsson A. The mutation system of the chlorophyll apparatus. Lund Univ; Arskr, 1940, 36: 11−40



[30]Guo S-W(郭士伟), Wang Y-F(王永飞), Ma S-M(马三梅), Li X(李霞), Gao D-Y(高东迎). Genetic analysis and fine mapping of a green-revertible albino leaf mutant in rice. Chin J Rice Sci (中国水稻科学), 2011, 25(1): 95−98 (in Chinese with English abstract) 



[31]Zhang X-Q(张向前), Li X-Y(李晓燕), Zhu H-T(朱海涛), Wang T(王涛), Xie X-M(解新明). Identification and candidate gene analysis of stage green-revertible albino mutant in rice (Oryza sativa L.). Chin Sci Bull (科学通报), 2010, 55(23): 2296−2301 (in Chinese with English abstract)



[32]Wang J(王军), Yang J(杨杰), Chen Z-D(陈志德), Fan F-J(范方军), Zhu J-Y(朱金燕), Yang J-H(杨金欢), Zhong W-G(仲维功). Physiological character and gene fine mapping of a virescent mutant v13(t) in rice (Oryza sativa L.). Sci Agric Sin (中国农业科学), 2011, 44(10): 1973−1979 (in Chinese with English abstract)



[33]Chen T, Zhang Y D, Zhao L, Zhu Z, Lin J, Zhang S B, Wang C L. Physiological character and gene mapping in a new green-revertible albino mutant in rice. J Genet Genomics, 2007, 34: 331−338



[34]Zhang L-K(张力科), Li Z-B(李志彬), Liu H-Y(刘海燕), Li R-H(李如海), Chen M-Y(陈满元), Chen A-G(陈爱国), Qian Y-L(钱益亮), Hua Z-T(华泽田), Gao Y-M(高用明), Zhu L-H(朱苓华), Li Z-G(黎志康). Study on morphological structure and genetic mapping of two novel leaf color mutants in rice. Sci Agric Sin (中国农业科学), 2010, 43(2): 223−229 (in Chinese with English abstract) 
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[4] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[5] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[6] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[7] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[8] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[9] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[10] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[11] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[12] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[13] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[14] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[15] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!