欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 1976-1982.doi: 10.3724/SP.J.1006.2013.01976

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆高丝氨酸激酶GmHSK基因的克隆与全生育期的表达分析

王家麟1,**,姜威1,**,于妍4,刘春燕2,陈庆山1,*,胡国华2,3,*   

  1. 1东北农业大学农学院,黑龙江哈尔滨 150030;2黑龙江省农垦科研育种中心,黑龙江哈尔滨 150090;3国家大豆工程技术研究中心,黑龙江哈尔滨 150050;4吉林农业大学发展学院,吉林长春 130600
  • 收稿日期:2013-03-06 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 胡国华, E-mail: hugh757@vip.163.com, Tel: 0451-55199475; 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945
  • 基金资助:

    本研究由国家科技支撑计划项目(2011BAD35B06-1), 国家现代农业产业体系建设专项(CARS-04-02A), 黑龙江省普通高等学校新世纪优秀人才培养计划(1252-NCET-004)和黑龙江省自然科学基金重大项目(ZD201213)资助。

Cloning and Expression Analysis of Soybean Homoserine Kinase (GmHSK) Gene at the Whole Growth Period

WANG Jia-Lin1,**,JIANG Wei1,**,YU Yan4,LIU Chun-Yan2,CHEN Qing-Shan1,*,HU Guo-Hua2,3,*   

  1. 1 College of Agriculture, Northeast Agricultural University, Harbin 150030, China; 2 Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin 150090, China; 3 The National Research Center of Soybean Engineering and Technology, Harbin 150050, China; 4 Development Academy, Jilin Agricultural University, Changchun 130600, China
  • Received:2013-03-06 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 胡国华, E-mail: hugh757@vip.163.com, Tel: 0451-55199475; 陈庆山, E-mail: qshchen@126.com, Tel: 0451-55191945

摘要:

高丝氨酸激酶(HSK)是天冬氨酸代谢途径中的重要酶,控制赖氨酸、甲硫氨酸、苏氨酸和异亮氨酸的生物合成。本研究从大豆Williams 82中克隆了大豆HSK基因GmHSK,该基因ORF1083 bp,编码360个氨基酸,其分子量为37.64 kD,等电点pI5.02GmHSK基因与拟南芥中的HSK基因具相似编码产物,均具GHMP激酶超家族保守的ATP结合结构域。系统进化分析将植物的HSK蛋白分为2类,GmHSK与苜蓿的同源基因的进化关系最近,且与双子叶植物拟南芥、蓖麻等的HSK聚为一类。qRT-PCR分析表明,GmHSK在大豆全生育期的8个组织和器官中均表达,但表达水平不同。推测GmHSK基因不仅是大豆营养生长所必需,也在物质积累过程中起重要调控作用。研究结果为转基因育种提高大豆蛋白的含量与品质提供了有益的候选基因。

关键词: 大豆, 高丝氨酸激酶, 表达模式, 全生育期

Abstract:

Homoserine kinase (HSK), the forth enzyme in the aspartate pathway, plays a key role in the biosynthesis for lysine, methionine, threonine, and isoleucine in higher plants. A HSK gene, termed GmHSK was cloned from soybean Williams 82 which contains a 1083 bp single open reading frame (ORF) encoding a 360 amino acid and 37.64 kD protein. The protein shares homology with homoserine kinase from Arabidopsis thaliana. Sequence alignment indicated that GmHSK contained a conserved motif of GHMP kinase superfamily. Phylogenetic analyses suggested that the HSK in plants could be classified into two groups. To have a global view of the dynamic gene expression pattern during the whole growth period, we analyzed the transcript levels in eight different tissues/organs by qRT-PCR. The results showed that the GmHSK gene was expressed in all vegetative organs and reproductive organs with various levels and fluctuated during the plant development. This data provided a versatile resource to understand the regulation of GmHSK gene during the whole growth period in the high protein crop, soybean, and could aid in the transgenic breeding to improve the content and quality of soybean protein.

Key words: Soybean, GmHSK, Expression profile, Whole growth stage

[1]Aubert S, Curien G, Bligny R, Gout E, Douce R. Transport, compartmentation, and metabolism of homoserine in higher plant cells. Carbon-13- and phosphorus-31-nuclear magnetic resonance studies. Plant Physiol, 1998, 116: 547–557



[2]Helm C V, DE Francisco A, Gaziola S A, Fornazier R F, Pompeu G B, Azevedo R A. Hull-less barley varieties: storage proteins and amino acid distribution in relation to nutritional quality. Food Biotechnol, 2004, 18: 327–341



[3]Azevedo R A, Arruda P, Turner W L, Lea P J. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. Phytochemistry, 1997, 46: 395–419



[4]Bryan A. The Aspartate Family and Branched-Chain Amino Acids. In: Miflin B J ed. The Biochemistry of Plants, Vol. 5. Amino Acids and Derivatives. New York: Academic Press Inc., 1980. pp 7403–7452



[5]Giovanelli J, Mudd S H, Datko A H. Homoserine esterification in green plants. Plant Physiol, 1974, 54: 725–736



[6]Greene R C. Biosynthesis of Methionine. In: Neidhardt F C ed. Escherichia coli and Salmonella Cellular and Molecular Biology. Washington, DC: ASM Press, 1996. pp 542–560



[7]Patte J C. Biosynthesis of Threonine and Lysine. In: Neidhardt F C ed. Escherichia coli and Salmonella Cellular and Molecular Biology. Washington, DC: ASM Press, 1996. pp 528–541



[8]Bork P, Sander C, Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci, 1993, 2: 31–40



[9]Datko A H, Giovanelli J, Mudd S H. Homocysteine biosynthesis in green plants, O-phosphory-L-homoserine as the physiological substrate for cystathionine γ-synthase. J Biol Chem, 1974, 249: 1139–1155



[10]Thoen A, Rognes S E, Aarnes H. Biosynthesis of threonine from homoserine in pea seedlings: I. Homoserine kinase. Plant Sci Lett, 1978, 13: 103–112



[11]Aarnes H. Homoserine kinase from barley seedlings. Plant Sci Lett, 1976, 7: 187–194



[12]Riesmeier J, Klonus D, Pohlenz H D. Purification to homogeneity and characterisation of homoserin kinase from wheat germ. Phytochemistry, 1993, 32: 581–584



[13]Lee M, Leustek T. Identification of the gene encoding homoserine kinase from Arabidopsis thaliana and characterization of the recombinant enzyme derived from the gene. Arch Biochem Biophys, 1999, 372: 135–142



[14]Baum H J, Madison J T, Thompson J F. Feedback inhibition of homoserine kinase from radish leaves. Phytochem, 1983, 22: 2409–2412



[15]Greenberg J M, Thompson J F, Madison J T. Homoserine kinase and threonine synthase in methionine-overproducing soybean tissue cultures. Plant Cell Rep, 1988, 7: 477–480



[16]Muhitch M J, Wilson K G. Chloroplasts are the subcellular localization of both soluble and membrane-associated homoserine kinase in pea (Pisum sativum L.) leaves. Z Pflanzenphysiol, 1983, 110: 39–46



[17]Wallsgrove R M, Lea P J, Miflin B J. Intracellular localisation of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol, 1983, 71: 780–784



[18]McWilliams D A, Berglund D R, Endres G J. Soybean growth and management Quickguide. In: Fargo N D ed. NDSU Extension Service. North Dakota State University, 2004. A-1174



[19]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25: 402–408



[20]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599



[21]Huo X, Viola R E. Substrate specificity and identification of functional groups of homoserine kinase from Escherichia coli. Biochemistry, 1996, 35: 16180–16185



[22]Li X Y, Dhaubhadel S. Soybean 14-3-3 gene family: identification and molecular characterization. Planta, 2011, 233: 569-582



[23]van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell, 2009, 21: 2179–2189



[24]Rochat C, Boutin J P. Metabolism of phloem-borne amino acids in maternal tissues of fruit of nodulated or nitrate-fed pea plants. J Exp Bot, 1991, 42: 207–221



[25]Yang Z, Rogers L M, Song Y, Guo W, Kolattukudy P E. Homoserine and asparagine are host signals that trigger in planta expression of a pathogenesis gene in Nectria haematococca. Proc Natl Acad Sci USA, 2005, 102: 4197–4202

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[13] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[14] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!