欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (11): 2065-2073.doi: 10.3724/SP.J.1006.2013.02065

• 耕作栽培·生理生化 • 上一篇    下一篇

弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响

周卫霞1,王秀萍2,穆心愿1,李潮海1,*   

  1. 1河南省粮食作物高产高效协同创新中心 / 河南农业大学农学院,河南郑州 450002;2河南省气象科学研究所,河南郑州 450003
  • 收稿日期:2013-03-26 修回日期:2013-06-24 出版日期:2013-11-12 网络出版日期:2013-08-12
  • 通讯作者: 李潮海, E-mail: lichaohai2005@163.com, Tel: 0371-63555629
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-2-19)资助。

Effects of Low-light Stress on Male and Female Flower Development and Pollination and Fructification Ability of Different Maize (Zea mays L.) Genotypes

ZHOU Wei-Xia1,WANG Xiu-Ping2,MU Xin-Yuan1,LI Chao-Hai1,*   

  1. 1 Collaborative Innovation Center for High Yield and High Efficiency Production of Cereal Crop in Henan Province / Agronomy College, Henan Agricultural University, Zhengzhou 450002, China; 2 Henan Institute of Meteorological Sciences, Zhengzhou 450003, China
  • Received:2013-03-26 Revised:2013-06-24 Published:2013-11-12 Published online:2013-08-12
  • Contact: 李潮海, E-mail: lichaohai2005@163.com, Tel: 0371-63555629

摘要:

以不耐阴型玉米豫玉22和耐阴型玉米郑单958为试验材料,设置自然光照和弱光胁迫两个处理,研究弱光胁迫对不同基因型玉米雌雄花发育的影响。研究结果表明,弱光胁迫延缓了雌雄穗的生长发育,表现为抽雄、吐丝和盛花期延迟,花期和雌雄间隔期延长。弱光胁迫下,在吐丝期不耐阴型玉米花粉量比对照显著增加,耐阴型玉米花粉量与对照差异较小;不耐阴型玉米花粉表面网纹在弱光胁迫下变粗且间隙增大,花粉萌发孔及其附近严重畸形,有的明显内陷,花粉内淀粉粒数目显著减少,营养供应能力减弱,耐阴型玉米在弱光胁迫下花粉表面网纹略有加粗或没有变化,萌发孔略微凹陷且程度远低于不耐阴型玉米,花粉中淀粉粒密度略有降低。遮光处理后,不耐阴型玉米的花粉活力、花粉萌发率和萌发速率表现为下降,而耐阴型玉米表现为上升。花丝的生长速率及伸出苞叶数量在弱光胁迫下显著下降,果穗上部花丝受到的影响最大,向下逐渐减弱。弱光胁迫下两个基因型玉米穗长和穗粒数减少,不耐阴型玉米受弱光胁迫影响的程度高于耐阴型玉米。雌雄间隔期延长、营养供应能力减弱导致的花粉畸形、花丝生长速率和可授粉花丝数目的减少以及籽粒IAA含量的下降和ABA含量的增加是弱光条件下玉米穗粒数显著减少的主要原因。

关键词: 玉米, 弱光胁迫, 光恢复, 基因型, 穗粒数

Abstract:

A split plot experiment was conducted under field conditions to study the effects of low-light stress on the ear and tassel development, pollination and seed-setting rate using two maize (Zea mays L.) hybrids (low light sensitive hybrid Yuyu22 and low light tolerant hybrid Zhengdan958). Low-light stress from three days before tasselling to ten days after silking was obtained using 50% transmittance shading nets. The results showed that low-light stress caused a slowdown of ear and tassel growth and development rate, delayed the tasselling date, silking date and full flowering date, prolonged the anthesis-silking interval (ASI). Daily pollen quantity was higher under low-light stress than that of the control at silking with a larger difference compared with the low light sensitive hybrid. For the low light sensitive hybrid under low light stress, reticula and gaps in the surface of pollen were increased, pollen aperture and its near part were severely deformed with significantly retraction, nutrient supply was reduced due to the reduction of starch grains in the pollen. While for the low light tolerant hybrid under low light stress, pollen surface characters were similar to those of the control, with a little retraction of the pollen aperture and decrease of starch grain density in the pollen. Under low light stress, pollen activity, pollen emergence rate and pollen tube growth rate of the low light sensitive hybrid decreased while those of the low light tolerant hybrid increased. Silk elongation rate and number of silks emerged from the husks were decreased and decreased more in the ear tip than in the ear base. Ear length and kernel number per ear decreased in both hybrids and decreased more in low light sensitive hybrid. Prolonged ASI, deformed pollen, reduction of nutrient supply in pollen, decreased silk elongation rate and number of silks emerged from the husks, and the decrease of kernel IAA content and the increase of kernel ABA content were the primary causes leading to the reduction of ear kernel number.

Key words: Maize, Low-light stress, Light recovery, Genotype, Kernel number

[1]Dong H Z, Zhang D M, Tang W, Li W J, Li Z H. Effects of planting system, plant density and flower removal on yield and quality of hybrid seed in cotton. Field Crops Res, 2005, 93: 74–84

[2]Li C-H(李潮海), Luan L-M(栾丽敏), Yin F(尹飞), Wang Q(王群), Zhao Y-L(赵亚丽). Effects of light stress at different stage on the growth and yield of different maize genotypes (Zea mays L.). Acta Ecol Sin (生态学报), 2005, 25(4): 824–830 (in Chinese with English abstract)

[3]Jia S-F(贾士芳), Li C-F(李从锋), Dong S-T(董树亭), Zhang J-W(张吉旺). Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level. Sci Agric Sin (中国农业科学), 2010, 43(5): 911–921 (in Chinese with English abstract)

[4]Fourrnier C, Andrieu B. Dynamics of the elongation of internodes in maize (Zea mays L.). Effects of shade treatment on elongation patterns. Ann Bot, 2000, 86: 1127–1134

[5]Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). Effects of shading on the growth, development and grain yield of summer maize. Chin J Appl Ecol (应用生态学报), 2006, 17(4): 657–662 (in Chinese with English abstract)

[6]Uhart S A, Andrade F H. Nitrogen deficiency in maize: II. Car-bon-nitrogen interaction effects on kernel number and grain yield. Crop Sci, 1995, 35: 1384–1389

[7]Du C-F(杜成凤), Li C-H(李潮海), Liu T-X(刘天学), Zhao Y-L(赵亚丽). Response of anatomical structure and photosyn-thetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin (生态学报), 2011, 31(21): 6633–6640 (in Chinese with English abstract)

[8]Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). Effects of shading in field on photo-synthetic characteristics in summer corn. Acta Agron Sin (作物学报), 2007, 33(2): 216–222 (in Chinese with English abstract)

[9]Li C-H(李潮海), Zhao Y-L(赵亚丽), Yang G-H(杨国航), Luan L-M(栾丽敏),Wang Q(王群), Li N(李宁). Effects of shading on photosynthetic characteristics of different genotype maize. Chin J Appl Ecol (应用生态学报), 2007, 18(6): 1259–1264 (in Chinese with English abstract)

[10]Jia S-F(贾士芳), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Li C-F(李从锋). Effect of shading on grain quality at different stages from flowering to maturity in maize. Acta Agron Sin (作物学报), 2007, 33(12): 1960–1967 (in Chinese with English abstract)

[11]Zhang J-W(张吉旺), Wu H-X(吴宏霞), Dong S-T(董树亭), Wang K-J(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). Effects of shading on yield and quality of summer maize. J Maize Sci (玉米科学), 2009, 17(5): 124–129 (in Chinese with English abstract)

[12]Fu J(付景), Li C-H(李潮海), Zhao J-R(赵久然), Ma L(马丽), Liu T-X(刘天学). Shade-tolerance indices of maize: selection and evaluation. Chin J Appl Ecol (应用生态学报), 2009, 20(11): 2705–2709 (in Chinese with English abstract)

[13]Liu T-X(刘天学), Wang X-P(王秀萍), Fu J(付景), Li C-H(李潮海). Response of Xundan maize hybrids to low-light stress. J Maize Sci (玉米科学), 2011, 19(1): 74–77 (in Chinese with Eng-lish abstract)

[14]Wang X-P(王秀萍), Liu T-X(刘天学), Li C-H(李潮海), Li D-P(李大鹏). Effects of shading on agronomic traits and ear de-velopment of maize cultivars (Zea mays L.) with different plant types. Acta Agric Jiangxi (江西农业学报), 2010, 22(1): 5–7 (in Chinese with English abstract)

[15]He Z-Y(赫忠友), Tan S-Y(谭树义), Lin L(林力), Hong D-K(洪德开), Bai C-Y(白翠云). Study on various light intensity and its quality affecting the fertility of maize staminate flower. Chin Agric Bull (中国农学通报), 1998, 14(4): 6–8 (in Chinese with English abstract)

[16]Zhao J-R(赵久然), Chen G-P(陈国平). Effects of shading treat-ment at different stages of plant development on grain production of corn (Zea mays L.) and observations of tip kernel abortion. Sci Agric Sin (中国农业科学), 1990, 23(4): 28–34 (in Chinese with English abstract)

[17]Andrade F H, Frugone M I, Uhart S A. Intercepted radiation at flowering and kernel number in maize: shade versus plant density effects. Crop Sci, 1993, 33: 482–485

[18]Kiniry J R, Tischler C R, Rosenthal W D, Gerik T J. Nonstruc-tural carbohydrate utilization by sorghum and maize shaded dur-ing grain growth. Crop Sci, 1992, 32: 131–137

[19]Wang Y-Z(王艳哲), Cui Y-H(崔彦宏), Zhang L-H(张丽华), Li J-C(李金才). Comparative study on methods for testing pollen viability of maize. J Maize Sci (玉米科学), 2010, 18(3): 173–176 (in Chinese with English abstract)

[20]Chang S-H(常胜合), Chen Y-H(陈彦惠), Su M-J(苏明杰), Qin G-Y(秦广雍). Comparison of four methods of maize (Zea mays L.) pollen viability identification. J Anhui Agric Sci (安徽农业科学), 2009, 37(30): 14562–14563 (in Chinese with English abstract)

[21]Song F-B(宋凤斌), Dai J-Y(戴俊英). Effects of drought stress on surface ultrastructure and vigour of pollen and filament. J Jilin Agric Univ (吉林农业大学学报), 2004, 26(1): 1–5 (in Chinese with English abstract)

[22]Zhang Z-L(张志良), Qu W-Q(瞿伟箐). Laboratory Guide of Plant Physiology (植物生理学实验指导), 3rd edn. Beijing: Higher Education Press, 2003. pp 127–128 (in Chinese)

[23]Zhao J L, Gang Y, Guo X W, Bao M D, Ai X N, Tie G L, Zhao H L, Qing X. Comparison between convenional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Anal Chim Acta, 2006, 571: 79–85

[24]Zhang W-Q(张维强), Shen X-Y(沈秀瑛), Dai J-Y(戴俊英). Effects of drought stress on pollen and filament viability and kernel formation of maize. J Maize Sci (玉米科学), 1993, 1(2): 45–48 (in Chinese)

[25]Cárcova J, Otegui M E. Ear temperature and pollination timing effects on maize kernel set. Crop Sci, 2001, 41: 1809–1815

[26]Otegui M E, Andrade F H, Suero E E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res, 1995, 40: 87–94

[27]Chen H-M(陈洪梅), Wang Y-F(汪燕芬), Yao W-H(姚文华), Luo L-M(罗黎明), Li J-L(李佳莉), Xu C-X(徐春霞), Fan X-M(番兴明), Guo H-C(郭华春). Utilization potential of the temperate maize inbreds integrated with tropical germplasm. Acta Agron Sin (作物学报), 2011, 37(10): 1785–1793 (in Chinese with English abstract)

[28]Li J-C(李金才), Cui Y-H(崔彦宏), Dong H-R(董海荣), Wang Y-Z(王艳哲), Zhang L-H(张丽华). The advances on the growth and development and the fertilization capability of maize (Zea mays L.) silk. J Agric Univ Hebei (河北农业大学学报), 2002, 25(1): 86–89 (in Chinese with English abstract)

[29]Bolaños J, Edmeades G O. Eight cycles of selection for drought tolerance in lowland tropical maize: II. Responses in reproductive behavior. Field Crops Res, 1993, 31: 253–268

[30]Westgate M E, Boyer J S. Reproduction at low and pollen water potentials in maize. Crop Sci, 1986, 26: 951–956

[31]Qi X-J(齐秀娟), Fang S-L(方金豹), Zhang J-B(张绍铃). Effects of plant growth regulators on pollen germination in kiwifruit. Nonwood Forest Res (经济林研究), 2010, 28(3): 45–50 (in Chinese with English abstract)

[32]Li J-C(李金才), Dong H-R(董海荣), Cui Y-H(崔彦宏). Study on the dynamics of growth and development of maize silks in different flower poaition. J Agric Univ Hebei (河北农业大学学报), 2003, 26(2): 1–4 (in Chinese with English abstract)

[33]Grant R F, Jackson B S, Kiniry J R, Arkin G F. Water deficit timing effects on yield components in maize. Agron J, 1989, 81: 61–65

[34]Guo G-F(郭贵峰), Wang S-X(王绍新), Feng J-Y(冯健英). Study on the filament vitality of maize inbred line. J Hebei Agric Sci (河北农业科学), 2009, 13(3): 1–3 (in Chinese with English abstract)

[35]Zhang G-G(张桂阁), Cao X-C(曹修才). Causes and prevention measures of blad and grain lack of maize. J Maize Sci (玉米科学), 1996, 4(4): 47–49 (in Chinese)

[36]Song F-B(宋凤斌), Dai J-Y(戴俊英), Zhang L(张烈), Huang G-K(黄国坤), Gu Y-Q(顾宜晴). Effects of water stress on maize pollen vigour and filament fertility. Acta Agron Sin (作物学报), 1998, 24(3): 368–373 (in Chinese with English abstract)

[37]Jin D M, Wang W J, Lan S Y, Xu Z X, Yang S H. Dynamic status of endogenous IAA, ABA and GA levels in superior and inferior spikelets of heavy panicle hybrid rice during grain filling. J Plant Physiol Mol Biol, 2002, 28: 215–220

[38]Fu J(付景), Xu Y-J(徐云姬), Chen L(陈露), Yuan L-M(袁莉民), Wang Z-C(王志琴), Yang J-C(杨建昌). Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelet sand their relation with grain filling of super rice. Chin J Rice Sci (中国水稻科学), 2012, 26(3): 302–310 (in Chinese with English abstract)

[39]Qi Y-F(祁业凤), Liu M-J(刘孟军). Change of endogenous hormone in cultivars of Chinese jujube with different type of embryo abortion. Acta Hortic Sin (园艺学报), 2004, 34(6): 800–802 (in Chinese with English abstract)

[40]Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103–1116

[41]Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell, 2000, 12: 1117–1126

[42]Yang J-C(杨建昌), Wang Z-Q(王志琴), Zhu Q-S(朱庆森), Su B-L(苏宝林). Regulation of ABA and GA to the grain filling of rice. Acta Agron Sin (作物学报), 1999, 25(3): 341–348 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!