欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (12): 2253-2261.doi: 10.3724/SP.J.1006.2013.02253

• 研究简报 • 上一篇    下一篇

人工模拟荫湿环境对玉米自交系生长发育特性的影响

晏庆九,霍仕平*,张芳魁,张兴端,张健,向振凡,余志江,冯云超   

  1. 重庆三峡农业科学院,重庆404155
  • 收稿日期:2013-02-24 修回日期:2013-07-25 出版日期:2013-12-12 网络出版日期:2013-10-01
  • 通讯作者: 霍仕平, E-mail: huosp4936@sina.com; Tel: 023-58801057
  • 基金资助:

    本研究由重庆市自然科学基金重点项目(CSTC, 2011BA1029),重庆市科技攻关项目(CSTC, 2011AC1138),重庆市农作物良种创新工程项目(CSTC, 2012ggC80004; CSTC, 2012ggC80006; CSTC, 2012ggC80003)资助。

Effects of Artificial Shaded-Humid Environment on Growth Characteristics in Different Maize Inbred Lines

YAN Qing-Jiu,HUO Shi-Ping*,ZHANG Fang-Kui,ZHANG Xing-Duan,ZHANG Jian,XIANG Zhen-Fan,YU Zhi-Jiang,FENG Yun-Chao   

  1. Chongqing Three Gorges Academy of Agricultural Science, Chongqing 404155, China
  • Received:2013-02-24 Revised:2013-07-25 Published:2013-12-12 Published online:2013-10-01

摘要:

采用人工遮光增湿的方法,通过比较30个玉米自交系在荫湿环境和自然环境下生长发育特性的差异,研究了荫湿环境对玉米自交系生长发育特性的影响。结果表明,本研究设置的遮光增湿环境明显增加了环境湿度,极显著降低了光照强度和光量子,而不影响环境温度;荫湿环境导致玉米自交系有效功能叶数和雄穗分枝数减少,株高、穗位高、百粒重和单株粒重降低,茎秆和果穗变细,穗长变短,行粒数减少,而第7叶长、第7叶长宽比和纹枯病指数增大,ASI延长,与自然环境下这些性状的表现差异均极显著,且基因型间存在极显著差异。主成分分析结果表明,前7个综合指标的累计贡献率达85.08%,根据主成分分析和隶属函数分析获得的各自交系的综合评价值(D)可将30个自交系分为耐荫湿性强、耐荫湿性中和耐荫湿性弱3个类型。逐步回归分析结果表明,对综合评价值D影响显著的性状指标是第7叶长、雄穗分枝数和单株粒重,回归方程的R = 0.896,达极显著,预示可根据这些性状受荫湿环境影响程度进行耐荫湿性玉米育种材料的鉴定与筛选。

关键词: 玉米, 自交系, 荫湿, 指标

Abstract:

Light deficiency and high humidity are important limiting factors resulting in stunted plant, lower production and poorer grain quality of maize (Zea mays L.) in southwest China. It could be an effective way for solving this problem to group with new maize hybrids by evaluating and selecting maize breeding materials with tolerance to shaded-humid environment. During 2011–2012, thirty maize inbred lines were tested and compared under the natural environment and the artificial by simulated shaded-humid environment at the same time. The results showed that the relative humidity of air increased significantly, theillumination intensity and photon decreased very significantly, but the air temperature changed little under the shaded-humid environmentresulting in that the effective functional leaves, tassel branches, plant height, ear height, 100-kernel weight, individual kernel weight, stem diameter, ear diameter, ear length and kernel number per row of inbred lines reduced; the interval from anthesis to silking (ASI) prolonged, the 7th leaf length, 7th leaf length-width ratio and sheath blight index became bigger, with highly significant differences  between two environments. The tested traits varied significantly among different inbred lines also, but not among different years. The results of principal component analysis indicated that the contribution ratio of accumulated variance of the seven main components reached 85.08%. According to the evaluating values (D), which computed by the comprehensive index values and subordinative function values, the thirty inbred lines could be divided into three groups with strong, middle and less tolerance to shaded-humid environment respectively.The stepwise regression analysis showed that the characters influencing the comprehensive values (D) significantly were the 7th leaf length, number of tassel branches and individual kernel weight. The correlation coefficient of linear regression equation was 0.896**, which suggested that we could identify and select maize breeding materials with tolerance to shaded-humid environment based on these character indices.

Key words: 玉米, 自交系, 荫湿, 指标

[1]Rong T-Z(荣廷昭), Li W-C(李晚忱), Yang K-C(杨克诚), Zhang B(张彪), Zhang S-K(张述宽), Tang H-J(唐洪军), Fan X-M(番兴明). Maize Breeding in Southwest Ecological Zones (西南生态区玉米育种). Beijing: China Agriculture Press, 2003. pp 26–28 (in Chinese)



[2]Zhang S-H(张世煌), Xu W-P(徐伟平), Li M-S(李明顺), Li X-H(李新海), Xu J-S(徐家舜). Challenge and opportunity in maize breeding program. J Maize Sci (玉米科学), 2008, 16(6): 1–5 (in Chinese with English abstract)



[3]Yuan L-Z(袁刘正), Li C-H(李潮海), Wang X-P(王秀萍), Yang S-K(杨世坤). Comparison of shade-tolerance among different maize (Zea mays L.) inbred lines. J Maize Sci(玉米科学), 2008, 16(6): 19–23 (in Chinese with English abstract)



[4]Zhang Y-Q(张亚勤), Yang H(杨华), Qi Z-Y(祁志云), Yuan L(袁亮), Wang N(王楠), Jin C(金川), Qiu Z-G(邱正高). Effect of light stress on the plants characters of maize inbred lines. Chin Agric Sci Bull(中国农学通报), 2011, 27(33): 40–43 (in Chinese with English abstract)



[5]Wang X-P(王秀萍), Liu T-X(刘天学), Li C-H(李潮海), Li D-P(李大鹏). Effects of shading on agronomic traits and ear development of maize cultivars (Zea mays L.) with different plant types. Acta Agric Jiangxi (江西农业学报), 2010, 22(1): 5–7 (in Chinese with English abstract)



[6]Luan L-M(栾丽敏). Effects of Shading on the Growth and Photosynthesis in Different Genotype Maize (Zea mays L.). MS Thesis of Henan Agricultural University, 2003. pp 1–2 (in Chinese with English abstract)



[7]Hashemi-Dezfouli A, Herbert S J. Intensifying plant density response of corn with artificial shade. Agron J, 1992, 84: 547–551



[8]Zhang J-W(张吉旺), Dong S-T(董树亭), Wang K-G(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin (作物学报), 2007, 33(2): 216–222 (in Chinese with English abstract)



[9]Li C-H(李潮海), Zhao Y-L(赵亚丽), Yang G-H(杨国航), Luan L-M(栾丽敏), Wang Q(王群), Li N(李宁). Effects of shading on photosynthetic characteristics of different genotype maize. Chin J Appl Ecol (应用生态学报), 2007, 18(6): 1259–1264 (in Chinese with English abstract)



[10]Fu J(付景), Li C-H(李潮海), Zhao J-R(赵久然), Ma L(马丽), Liu T-X(刘天学). Shade tolerance indices of maize: Selection and evaluation. Chin J Appl Ecol (应用生态学报), 2009, 20(11): 2705–2709 (in Chinese with English abstract)



[11]Zhong X-M(钟雪梅), Shi Z-S(史振声). Research progress on corn shading stress. J Maize Sci (玉米科学), 2012, 20(1): 138–141 (in Chinese with English abstract )



[12]Liu S-Y(刘淑云), Dong S-T(董树亭), Hu C-H(胡昌浩), Bai P (白萍), Lü X(吕新). Relationship between ecological environment and maize yield and quality. Acta Agron Sin (作物学报), 2005, 31(5): 571-576 (in Chinese with English abstract )



[13]Gerakis P A, Parakosta-tasopoulou D. Effects of dense planting and artificial shading on five maize hybrids. Agric Meteorol, 1980, 21: 129–137



[14]Jia S-F(贾士芳), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Li C-F(李从锋). Effect of shading on grain quality at different stages from flowering to maturity in maize. Acta Agron Sin (作物学报), 2007, 33(12): 1960–1967 (in Chinese with English abstract)



[15]Zhang J-W(张吉旺), Wu H-X(吴宏霞), Dong S-T(董树亭), Wang K-G(王空军), Hu C-H(胡昌浩), Liu P(刘鹏). Effects of shading on yieid and quality of summer maize. J Maize Sci (玉米科学), 2009, 17(5): 124-129 (in Chinese with English abstract )



[16]Hashemi-Dezfouli A, Herbert S J. Intensifying plant density response of corn with artificial shade. Agron J, 1992, 84: 547–551



[17]Li X-H(李新海), Yuan L-X(袁力行), Li X-H(李晓辉), Zhang S-H(张世煌), Li M-S(李明顺), Li W-H(李文华). Heterotic grouping of 70 maize inbred lines by SSR markers. Sci Agric Sin (中国农业科学), 2003, 36(6): 622–627 (in Chinese with English abstract)



[18]Zhou G-S(周广生), Mei F-Z(梅方竹), Zhou Z-Q(周竹青), Zhu X-T(朱旭彤). Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin (中国农业科学), 2003, 36(11): 1378–1382 (in Chinese with English abstract)



[19]Ding A-P(丁爱萍), Wang R(王瑞), Zhang Z-W(张卓文). Selection of shade-tolerance identification indices for 12 garden plant species. Plant Physiol Commun (植物生理学通讯), 2009, 45(1): 55–59 (in Chinese with English abstract)



[20]Zhou G-S(周广生), Mei F-Z(梅方竹), Zhou Z-Q(周竹青), Zhu X-T(朱旭彤). Comprehensive evaluation on waterlogging resistance of different wheat varieties. J Biomathematics (生物数学学报), 2003, 18(1): 98–104 (in Chinese with English abstract)



[21]Yu J-L(余家林). Multiple Experimental Statistics in Agriculture (农业多元试验统计). Beijing: Beijing Agricultural University Press, 1993. pp 141–192 (in Chinese)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!