欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1725-1732.doi: 10.3724/SP.J.1006.2014.01725

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

以关联分析发掘小麦整穗发芽抗性基因分子标记

朱玉磊,王升星,赵良侠,张德新,胡建帮,曹雪连,杨亚杰,常成,马传喜,张海萍*   

  1. 安徽农业大学农学院 / 农业部黄淮南部小麦生物学与遗传育种重点实验室,安徽合肥230036
  • 收稿日期:2013-12-16 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-07-23
  • 通讯作者: 张海萍,E-mail: zhhp20@163.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项,安徽省小麦产业技术体系建设专项和教育部高等学校博士学科点专项(20113418120004)资助。

Exploring Molecular Markers of Preharvest Sprouting Resistance Gene Using Wheat Intact Spikes by Association Analysis

ZHU Yu-Lei,WANG Sheng-Xing,ZHAO Liang-Xia,ZHANG De-Xin,HU Jian-Bang,CAO Xue-Lian,YANG Ya-Jie,CHANG Cheng,MA Chuan-Xi,ZHANG Hai-Ping*   

  1. Key Laboratory of Wheat Biology and Genetic Improvement in South Yellow & Huai River Valley, Ministry of Agriculture / College of Agronomy, Anhui Agricultural University, Hefei 230036, China
  • Received:2013-12-16 Revised:2014-07-06 Published:2014-10-12 Published online:2014-07-23
  • Contact: 张海萍,E-mail: zhhp20@163.com

摘要:

利用分布于小麦全基因组的181对分子标记,分析264份自然群体的基因型,采用TASSLE软件的GLMMLM模型检测与整穗发芽抗性紧密关联的标记位点,发掘相关位点内的优异等位变异。在2012年和2013年室内整穗发芽率、2013年田间自然降雨整穗发芽率3个环境中,共关联到20个显著位点(P<0.05),分布于小麦染色体1AS2DS3AS3BL4AL5AS5BL6BS6DS7AL7BL上。分别位于2DS7BL上的分子标记gwm102barc340同时在3个环境下关联到,属于稳定的抗性位点; 另有6个标记位点同时在2个环境下关联到; 其余12个标记位点仅在1个环境下关联到。位于7BL上的barc340标记位点为一新报道位点。从重复关联的8个标记位点内共检测出10种优异等位变异。barc28-229bpbarc28-217bp对提高整穗发芽抗性效应最显著,主要分布在地方品种中(如遂宁坨坨麦等),而gwm102-142bpbarc186-199bp效应虽然相对较小,但多分布在推广品种中(如扬麦158),有利于穗发芽抗性分子育种的直接应用。

关键词: 小麦, 穗发芽, 休眠, 分子标记, 关联分析

Abstract:

To improve pre-harvest sprouting (PHS) resistance in wheat breeding, it is important to explore marker loci and elite alleles associated with PHS resistance using intact spikes. In this study, a total of 181 markers were used to 264 genotype materials. General and mixed linear models (GLM and MLM) were used to analyze PHS phenotypic data in three environments (2012-in house, 2013-in house and 2013-in field). The results showed that twenty markers were identified by association analysis, and located on chromosomes 1AS, 2DS, 3AS, 3BL, 4AL, 5AS, 5BL, 6BS, 6DS, 7AL, and 7BL. The markers gwm102 on 2DS and barc340 on 7BL were detected stably in three environments, among which barc340 was likely to be novel and needs to be further studied through biparental linkage mapping analysis. Six markers were detected in two environments, and the other loci linked with 12 markers were detected only in one environment. A total of ten elite alleles were further explored among the eight loci with repeated associations. The alleles barc28-229bp and barc28-217bp for high PHS resistance were all distributed in local cultivars (e.g.Suiningtuotuomai). However, the alleles gwm102-142bp and barc186-199bp with intermediate PHS resistance were mainly detected in released cultivars (e.g. Yangmai 158), which could be beneficial to wheat molecular breeding.

Key words: Triticum aestivum L., Preharvest sprouting, Dormancy, Molecular marker, Association analysis

[1]Groos C, Gay G, Perretant R M, Bernard G M, Charmet D G. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white red grain bread-wheat cross. Theor Appl Genet, 2002, 104: 39–47



[2]Tan M K, Sharp P J, Lu M Q, Howes N. Genetics of grain dormancy in a white wheat. Aust J Agric Res, 2006, 57: 1157–1165



[3]Mares D J, Mrva K. Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust J Agric Res, 2001, 52: 1257–1265



[4]Kottearachchi N S, Uchino N, Kato K, Miura H. Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs. Euphytica, 2006, 152: 421–428



[5]Gatford K T, Eastwood R F, Halloran G M. Germination inhibitors in bracts surrounding the grain of Triticum tauschii. Funct Plant Biol, 2002, 29: 881–890



[6]Yang Y, Zhao X L, Xia L Q, Chen X M, Xia X C, Yu Z, He Z H, Roder M. Development and validation of a Viviparous-1 STS marker for preharvest sprouting tolerance in Chinese wheats. Theor Appl Genet, 2007, 115: 971–980



[7]Roy J K, Prasad M, Varshney R K, Balyan H S, Blake T K, Dhaliwal H S, Singh H, Edwards K J, Gupta P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet, 1999, 99: 336–340



[8]Kulwal P L, Kumar N, Gaur A, Khurana P, Khurana J P, Tyagi A K, Balyan H S, Gupta P K. Mapping of a major QTL for preharvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet, 2005, 111: 1052–1059



[9]Mohan A, Kulwal P, Singh R, Kumar V, Mir R R, Kumar J, Prasad M, Balyan H S, Gupta P K. Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica, 2009, 168: 319–329



[10]Osa M, Kato K, Mori M, Shindo C, Torada A, Miura H. Mapping QTLs for seed dormancy and the Vp1 homologue on chromosome 3A in wheat. Theor Appl Genet, 2003, 106: 1491–1496



[11]Mori M, Uchino N, Chono M, Kato K, Miura H. Mapping QTLs for grain dormancy on wheat chromosome 3A and group 4 chromosomes, and their combined effect. Theor Appl Genet, 2005, 110: 1315–1323



[12]Liu S B, Cai S B, Robert G, Chen C X, Bai G H. Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco. Theor Appl Genet, 2008, 117: 691–699



[13]Liu S B, Bai G H. Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theor Appl Genet, 2010, 121: 1395–1404



[14]张海萍, 冯继明, 常成, 马传喜, 张秀英, 闫长生, 游光霞, 肖世和. 中国小麦地方品种籽粒强休眠特性的主效基因鉴定. 农业生物技术学报, 2011, 19: 270–277



Zhang H P, Feng J M, Chang C, Ma C X, Zhang X Y, Yan C S, You G X, Xiao S H. Investigation of main loci contributing to strong seed dormancy of Chinese wheat landrace. J Agric Biotechnol, 2011, 19: 270–277 (in Chinese with English abstract)



[15]朱占玲, 田宾, 刘宾, 谢全刚, 田纪春. 小麦整穗发芽的QTL定位分析. 山东农业科学, 2010, (6): 19– 23



Zhu Z L, Tian B, Liu B, Xie Q G, Tian J C. Quantitative trait loci analysis for pre-harvest sprouting using intact spikes in wheat (Triticum aestivum L.). Shandong Agric Sci, 2010, (6): 19–23 (in Chinese with English abstract)



[16]Chen C X, Cai S B, Bai G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed, 2008, 21: 351–358



[17]Liu S B, Bai G H, Cai S B, Chen C X. Dissection of genetic components of preharvest sprouting resistance in white wheat. Mol Breed, 2011, 27: 511–523



[18]Mares D J, Mrva K, Cheong J, Williams K, Watson B, Storlie E, Sutherland M, Zou Y. A QTL located on chromosome 4A associated with dormancy in white- and red grained wheats of diverse origin. Theor Appl Genet, 2005, 111: 1357–1364



[19]Ogbonnaya F C, Imtiaz M, Ye G, Hearnden P R, Hernandez E, Eastwood R F, Van Ginkel M, Shorter S C, Winchester J M. Genetic and QTL analysis of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet, 2008, 116: 891–902



[20]Zhang X Q, Li C D, Tay A, Lance R, Mares D, Cheong J, Cakir M, Ma J H, Appels R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed, 2008, 22: 227–236



[21]Torada A, Ikeguchi S, Koike M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143: 251–255



[22]Rehman Arif M A, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Börner A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 2012, 188: 409–417



[23]Kulwal P, Ishikawa G, Benscher D, Feng Z Y, Yu L X, Jadhav A, Mehetre S, Sorrells M E. Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet, 2012, 125: 793– 805



[24]Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007, 12: 57–63



[25]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation on study. Mol Ecol, 2005, 14: 2611– 2620



[26]Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635



[27]文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析: II. 优异等位变异的发掘. 作物学报, 2008, 34: 1339–1349



Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of a agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339–1449 (in Chinese with English abstract)



[28]Munkvold J D, Tanaka J, Benscher D, Sorrells M E. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. Theor Appl Genet, 2009, 119: 1223–1235



[29]Fulton T M, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95: 881–894

 


 
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!