欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (10): 1857-1864.doi: 10.3724/SP.J.1006.2014.01857

• 耕作栽培·生理生化 • 上一篇    下一篇

半干旱地区菊芋品系植株表型与光合特性分析

吕世奇,寇一翾,杨彬,曾军,赵长明*   

  1. 兰州大学生命科学学院 / 草地农业生态系统国家重点实验室,甘肃兰州 730000
  • 收稿日期:2014-02-11 修回日期:2014-07-06 出版日期:2014-10-12 网络出版日期:2014-08-04
  • 通讯作者: 赵长明, E-mail: zhaochm@lzu.edu.cn, Tel: 0931-8914305
  • 基金资助:

    本研究由教育部新世纪人才支持计划基金(NCET-08-257)项目资助。

Analysis of Phenotypic Traits and Photosynthetic Characteristics of Jerusalem Artichoke (Helianthus tuberosus L.) in the Semi-Arid Area

LÜ Shi-Qi,KOU Yi-Xuan,YANG Bin,ZENG Jun,ZHAO Chang-Ming*   

  1. State Key Laboratory of Grassland Agro-Ecosystems / School of Life Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2014-02-11 Revised:2014-07-06 Published:2014-10-12 Published online:2014-08-04
  • Contact: 赵长明, E-mail: zhaochm@lzu.edu.cn, Tel: 0931-8914305

摘要:

为了加快半干旱地区的新型资源作物菊芋品种的选育进程,探讨菊芋产量及相关性状表型和光合生理基础是必要的。选用本课题组收集和培育的4个品系( 2个高产,2个低产品系),设置随机区组试验,比较菊芋高产和低产品系与产量形成相关的生物量累积、植株表型和光合特性的差异。结果表明,高产菊芋品系的地上生物量、块茎产量及根生物量显著高于低产品系;高产品系整体表现出明显的生长优势,其株高、基径、叶面积和叶片数均显著高于低产品系。气体交换参数分析表明,高产品系的光补偿点和暗呼吸速率显著小于低产品系,而其他各项参数差异不显著。相关性分析表明,菊芋块茎产量与株高、基径、叶面积、叶片数、地上生物量和根生物量呈显著正相关,而与光补偿点和暗呼吸速率呈显著负相关。建议多的叶片数、大的叶面积和发达的根系作为半干旱地区菊芋高产品系田间选育指标,而低的光补偿点和暗呼吸速率在高产品系选育中也具参考价值。

关键词: 菊芋品系, 表型特征, 光合特性, 半干旱地区

Abstract:

To speed up breeding process for Jerusalem artichoke in semi-arid area, it is necessary to investigate traits related to yield and photosynthetic characteristics. Four stable lines including two high-yield lines and two low-yield lines were screened as materials, agronomic traits and photosynthesis parameters were determined. The results showed that the tuber yield, shoot biomass and root biomass of Jerusalem artichoke high-yield lines were significantly higher than those of low-yield lines, and the plant height, stem diameter, leaf area, leaf number of high-yield lines were also significantly higher than those of low-yield lines, then compared with low-yield lines, the high-yield lines showed a stronger growth vigor. LCP and Rd of high-yield lines were significantly lower than those of low-yield lines, but the difference of other parameters were not significant. Correlation analysis indicated that tuber yield had significantly positive correlation with plant height, stem diameter, leaf area, leaf number, shoot biomass and root biomass, while significantly negative correlation with LCP and Rd. Hence, in semi-arid area more leaf number, larger leaf area and well-developed root system are very important and reliable indicators and lower LCP and Rd are important reference value for breeding high-yield lines in Jerusalem artichoke.

Key words: Jerusalem artichoke lines, Phenotypic traits, Photosynthetic characteristics, Semi-arid area

[1] McLaurin W J, Somda Z C, Kays S J. Jerusalem artichoke growth, development, and field storage: 1. Numerical assessment of plant development and dry matter acquisition and allocation. J Plant Nutr, 1999, 22: 1303–1313



[2] Denoroy P. The crop physiology of Helianthus tuberosus L.: a model orientated view. Biomass Bioenergy, 1996, 11: 11–32



[3] Zhuang D F, Jiang D, Liu L, Huang Y H. Assessment of bioenergy potential on marginal land in China. Renew Sustain Energy Rev, 2011, 15:1050–1056



[4] Westley L C. The effect of inflorescence bud removal on tuber production in Helianthus tuberosus L. (Asteraceae). Ecology, 1993, 74: 2136–2144



[5] 隆小华, 刘兆普, 刘玲, 王琳. 盐生能源植物菊芋研究进展. 海洋科学进展, 2005, 33: 80–85



Long X H, Liu Z P, Liu L, Wang L. Advances in study on salt-tolerance energy source plant Helianthus tuberosus L. Adv Marine Sci, 2005, 33: 80–85 (in Chinese with English abstract)



[6] Saengkanuk A, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Ear Food Res Technol, 2011, 233: 609–616



[7] Saengthongpinit W, Sajjaanantakil T. Influence of harvest time and storage temperature on characteristics of inulin from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Postharvest Biol Technol, 2005, 37: 93–100



[8] Baldimi M, Danuso F, Turi M, Vannozzi G P. Evaluation of new clones of Jerusalem artichoke (Helianthus tuberosus L.) for inulin and sugar yield from stalks and tubers. Ind Crop Prod, 2004: 25–40



[9] 寇一翾, 吕世奇, 刘建全, 赵长明. 寡糖类能源植物菊芋及其综合利用研究进展. 生命科学. 2014, 26: 451–457



Kou Y X, Lü S Q, Liu J Q, Zhao C M. The review of Helianthus tuberosus L. and its comprehensive utilization as a bioenergy plant rich in oligosaccharide. Chin Bull Life Sci, 2014, 26: 451–457 (in Chinese with English abstract)



[10] Li X F, Hou S L, Su M, Yang S S, Jiang G, Qi D M, Chen S Y, Liu G S. Major energy plants and their potential for bioenergy development in China. Environ Manage, 2010, 46: 579–589



[11] 刘祖昕, 谢光辉. 菊芋作为能源植物研究进展. 中国农业大学学报, 2012, 17(6): 122–132



Liu Z X, Xie G H. An overview of researches on Jerusalem artichoke as a biofuel crop. J China Agric Univ, 2012, 17(6): 122–132 (in Chinese with English abstract)



[12] 贾敬敦, 马隆龙, 蒋丹平, 葛毅强. 生物质能源产业科技创新发展战略. 北京: 化学工业出版社, 2014. pp 255–261



Jia J D, Ma L L, Jiang D P, Ge Y Q. Development Strategy for the Science and Technology Innovation of Biomass Energy Industry. Beijing: Chemical Industry Press, 2014. pp 255–261 (in Chinese)



[13] Liu Z X, Spirtz J H J, Sha J, Xue S, Xie G H. Growth and yield performance of Jerusalem artichoke clones in a semi-arid region of China. Agron J, 2012, 104: 1538–1546



[14] Baldini M, Danuso F, Monti A, Amaducci M T, Stevanato P, Mastro G D. Chicory and Jerusalem artichoke productivity in different areas of Italy, in relation to water availability and time of harvest. Italian J Agron, 2006, 1: 291–307



[15] Kou Y X, Zeng J, Liu J Q, Zhao C M. Germplasm diversity and differentiation of Helianthus tuberosus L. revealed by AFLP maker and phenotypic traits. J Agric Sci, 2013: 1–11



[16] Chen L, Long X H, Zhang Z H, Zheng X T, Rengel Z, Liu Z P. Cadmium accumulation and translocation in two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Pedosphere, 2011, 21: 573–580



[17] Long X H, Huang Z R, Huang Y L, Kang J, Zhang Z H, Liu Z P. Response of two Jerusalem artichoke (Helianthus tuberosus L.) cultivars differing in tolerance to salt treatment. Pedosphere, 2010, 20: 515–524



[18] 张美兰. 基于GIS的耕地地力评价研究-以甘肃省榆中县为例. 兰州大学硕士学位论文, 甘肃兰州, 2010. pp 23–64



Zhang M L. Evaluation of Cultivated Land Fertility Based on GIS-a Case Study of Yuzhong County of Gansu Province. MS Thesis of Lanzhou University, Lanzhou, China, 2010. pp 23–64 (in Chinese with English abstract)



[19] Ethier G J, Livingston N J. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von caemmerer-berry lead photosynthesis model. Plant Cell Environ, 2004, 27: 137–153



[20] Cannell M G R, Thornley J H M. Temperature and CO2 response of leaf and canopy photosynthesis: a clarification using the non-rectangular hyperbola model of photosynthesis. Ann Bot, 1998, 82: 883–892



[21] 杜永, 王艳, 王学红, 孙乃力, 杨建昌. 黄淮地区不同粳稻品种株型/产量与品质的比较分析. 作物学报, 2007, 33: 1079–1085



Du Y, Wang Y, Wang X H, Sun N L, Yang J C. Comparisons of plant type, grain yield and quality of different japonica rice cultivars in the Huanghe-Huaihe River Area. Acta Agron Sin, 2007, 33: 1079–1085 (in Chinese with English abstract)



[22] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 42–120 (in Chinese)



Ling Q H. Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 42–120 (in Chinese)



[23] 李俊, 钟英娜, 郭春华. 马铃薯叶面积与产量和品系关系研究. 中国马铃薯, 2013, 27(1): 34–37



Li J, Zhong Y N, Guo C H. Correlation of leaf area with yield and quality in potato. Chin Potato J, 2013, 27(1): 34–37 (in Chinese with English abstract)



[24] 王义芹, 杨兴洪, 李滨, 童依平, 李振声. 小麦叶面积及光合速率与产量关系的研究. 华北农学报, 2008, 23: 10–15



Wang Y Q, Yang X H, Li B, Tong Y P, Li Z S. Study on the relation between leaf area, photosynthetic rate and yield of wheat. Acta Agric Boreali-Sin, 2008, 23: 10–15 (in Chinese with English abstract)



[25] 孙锐, 彭畅, 丛艳霞, 董志强, 王志敏, 赵明. 不同密度春玉米叶面积系数动态特征及其对产量的影响. 玉米科学, 2008, 16(4): 61–65



Sun Y, Peng C, Cong Y X, Dong Z Q, Wang Z M, Zhao M. Dynamic characteristics of leaf area index and their effects on yield in different density spring-maize. J Maize Sci, 2008, 16(4): 61–65 (in Chinese with English abstract)



[26] 王萍, 黄洁, 李开锦, 叶剑秋, 许瑞丽. 旱稻主要农艺性状与产量相关及通径分析. 热带农业科学, 2006, 26(1): 18–20



Wang P, Huang J, Li K J, Ye J Q, Xu R L. Correlation between grain yield and main agronomic traits of upland rice. Chin J Trop Agric, 2006, 26: 18–20 (in Chinese with English abstract)



[27] 魏臻武, 符昕, 曹致中, 王晓俊, 耿小丽, 赵艳, 朱铁霞. 苜蓿生长特性和产草量关系的研究. 草业学报, 2007, 16(4): 1–8



Wei Z W, Fu X, Cao Z Z, Wang X J, Geng X L, Zhao Y, Zhu T X. Forage yield component and growth characteristics of Medicago sative. Acta Pratac Sin, 2007, 16(4): 1–8 (in Chinese with English abstract)



[28] 隆小华, 刘兆普. 菊芋株型在高产育种中的作用. 中国农学通报, 2010, 26(9): 263–266



Long X H, Liu Z P. Function of ideal plant type in breeding of Helianthus tuberosus L. for high yield and good grain quality. Chin Agric Sci Bull, 2010, 26(9): 263–266 (in Chinese with English abstract)



[29] 钟启文, 王怡, 王丽慧, 李莉. 菊芋生长发育动态及光合性能指标研究. 西北植物学报, 2007, 27: 1843–1848



Zhong Q W, Wang Y, Wang L H, Li L. Change of growth, development and photosynthesis indicators of Jerusalem artichoke. Acta Bot Boreal-occident Sin, 2007, 27: 1843–1848 (in Chinese with English abstract)



[30] 李伟忠, 安英辉, 许崇香, 孙梅, 闵丽, 姜森, 陈庆山, 胡国华. 玉米自交系表型性状与产量的灰色关联分析. 作物杂志, 2012, (5): 105–108



Li W Z, An Y H, Xu C X, Sun M, Min L, Jiang S, Chen Q S, Hu G H. Grey relational analysis between phenotypic traits and yield of maize inbred lines. Crops, 2012, (5): 105–108 (in Chinese with English abstract)



[31] 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201–2210



Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristic of super-high yield population in yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201–2210 (in Chinese with English abstract)



[32] Swanton C J, Cavers P B. Biomass and nutrient allocation patterns in Jerusalem artichoke (Helianthus tuberosus L.). Can J Bot, 1989, 67: 2880–2887



[33] Haase J, Brandl R, Ccheu S, Schadler M. Above- and below-ground interactions are mediated by nutrient availability. Ecology, 2008, 89: 3072–3081



[34] 许大全. 光合速率、光合效率与作物产量. 生物学通报, 1999, 34(8): 8–10



Xu D Q. Relationship between photosynthetic rate and its efficiency. Bull Biol, 1999, 34(8): 8–10



[35] 梁军生, 陈晓鸣. 杨子祥, 刘娟, 王键敏, 陈航. 云南松与华山松人工混交林针叶光合速率对光合CO2浓度的响应特征. 林业科学研究, 2009, 22(1): 21–25



Liang J S, Chen X M, Yang Z X, Liu J, Wang J M, Chen H. Photosynthesis rate in response to light intensity and CO2 concentration in the mixed plantation of Pinus yunnanensis and Pinus amandii. For Res, 2009, 22(1): 21–25 (in Chinese with English abstract)



[36] 宋庆安, 童方平, 易霭琴, 李贵, 皮兵. 光胁迫下欧洲荚蒾的光合生理生态特性. 中国农学通报, 2008, 24(5): 166–171



Song Q A, Tong F P, Yi A Q, Li G, Pi B. Studies on physiological characteristics of photosynthetic of Vihurnum opulus L. under light stress. Chin Agric Sci Bull, 2008, 24(5): 166–171 (in Chinese with English abstract)



[37] Donald C M. The breeding of crop ideotypes. Euphytica, 1968, 17: 385–403



[38] Monti A, Amaducci M T, Venturi G. Growth response, leaf gasexchange and fructans accumulation of Jerusalem artichoke (Helianthus tuberosus L.) as affected by different water regimes. Eur J Agron, 2005, 23: 136–145



[39 ]董志新, 韩清芳, 贾志宽, 任广鑫. 不同苜蓿品种光合速率对光和CO2浓度响应特征. 生态学报, 2007, 27: 2272–2277



Dong Z X, Han Q F, Jia Z K, Ren G X. Photosynthesis rate in response to light intensity and CO2 concentration in different alfalfa varieties. Acta Ecol Sin, 2007, 27: 2272–2277 (in Chinese with English abstract)



[40] 张振文, 张保玉, 童海峰, 房林. 葡萄开花期光合作用光补偿点和光饱和点的研究. 西北林学院学报, 2010, 25(1): 24–29



Zhang Z W, Zhang B Y, Tong H F, Fang L. Photosynthesis LCP and LSP of different grapevine cultivars. J Northwest For Univ, 2010, 25(1): 24–29 (in Chinese with English abstract)

[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[5] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[6] 马正波, 董学瑞, 唐会会, 闫鹏, 卢霖, 王庆燕, 房孟颖, 王琦, 董志强. 四甲基戊二酸对夏玉米光合生产特征的调控效应[J]. 作物学报, 2020, 46(10): 1617-1627.
[7] 杜进勇,柴强,王一帆,范虹,胡发龙,殷文,李登业. 地上地下互作强度对小麦间作玉米光合特性的影响[J]. 作物学报, 2019, 45(9): 1398-1406.
[8] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[9] 严青青,张巨松,代健敏,窦巧巧. 甜菜碱对盐碱胁迫下海岛棉幼苗光合作用及生物量积累的影响[J]. 作物学报, 2019, 45(7): 1128-1135.
[10] 任永福,陈国鹏,蒲甜,陈诚,曾瑾汐,彭霄,马艳玮,杨文钰,王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应[J]. 作物学报, 2019, 45(5): 728-739.
[11] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[12] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[13] 程亚娇,范元芳,谌俊旭,王仲林,谭婷婷,李佳凤,李盛蓝,杨峰,杨文钰. 光照强度对大豆叶片光合特性及同化物的影响[J]. 作物学报, 2018, 44(12): 1867-1874.
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性[J]. 作物学报, 2018, 44(03): 414-422.
[15] 刘红艳,周芳,李俊,杨敏敏,周婷,郝国存,赵应忠. 芝麻黄化突变体YL1的叶片解剖学及光合特性[J]. 作物学报, 2017, 43(12): 1856-1863.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!