作物学报 ›› 2015, Vol. 41 ›› Issue (01): 66-71.doi: 10.3724/SP.J.1006.2015.00066
闫海芳*,王斐,李桥,李鸿昌,杨虎城
YAN Hai-Fang*,WANG Fei,LI Qiao, I Hong-Chang,YANG Hu-Cheng
摘要:
RUB1 [related to ubiquitin 1)是植物和酵母中一种泛素类似蛋白质,是Cullin家族的一个成员。为阐释津田芜菁BrRUB1基因的表达特性,本研究克隆了津田芜菁RUB1基因的全长cDNA序列,命名为BrRUB1,GenBank登录号为KF501173。其ORF全长471 bp,编码156个氨基酸;亚细胞定位结果显示,BrRUB1-GFP定位于细胞核,表明BrRUB1蛋白可能在细胞核中发挥其功能。荧光定量PCR检测BrRUB1的表达表明,该基因表达量在花蕾中最高,花瓣中次之,具有组织特异性。而且Br RUB1在芜菁根皮中的表达受长波紫外线[UV-A)诱导。
[1]Hellmann H, Estelle M. Plant development: regulation by protein degradation. Science, 2002, 297: 793–797[2]Leyser H M O, Lincoln C A, Timpte C, Vierstra R D. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature, 1993, 364: 161–164[3]Parry G, Estelle M. Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Seminars Cell Dev Biol, 2004, 15: 221–229[4]Zhang X D, Matunis M J. Ub in charge: regulating E2 enzyme nuelear import. Nat Cell Biol, 2005, 7: 12–14[5]Zhang Y E, Xu WY, Li Z H. F-box protein DOR functions as a novel inhibitory factor for abscisic acid-indUBCd stomatal closure under droughtstress inArabidopsis. Plant Physiol, 2008, 148: 2121–2133[6]Qin F, Sakuma Y, Phan Tran L S. Arabidopsis DREB2A-Interacting poteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell, 2008, 20: 1693–1707[7]Calderon-Villalobos L I, Nill C, Marrocco K. The evolutionarily conserved Arabidopsis thaliana F-box protein AtFBP7 is required for efficient translation during temperature stress. Gene, 2007, 392: 106–116[8]Zhou B, Li Y, Xu Z, Yan H, Homma S, Kawabata S. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip [Brassica rapa). J Exp Bot, 2007, 58: 1771–1781[9]Kawabata S, Kusahara Y, Li Y, Sakiyama R. The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hort Sci, 1999, 68: 519–526[10]Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998–9002[11]Zhou B, Zhao X, Kawabata S, Li Y. Transient expression of a foreign gene by direct incorporation of DNA into intact plant tissue through vacuum infiltration. Biotechnol lett, 2009, 31: 1811–1815[12]高启国, 宋明, 牛义, 杨昆, 朱利泉, 王小佳. 甘蓝中硫氧还蛋白编码基因THL1的分子特性及表达研究. 园艺学报, 2007, 34: 909–914Gao Q G, Song M, Niu Y, Yang K, Zhu L Q, Wang X J. Molecular characterization and expression of thioredoxin-like protein THL1 gene from Brassica oleracea L. Acta Hort Sin, 2007, 34: 909–914 [in Chinese with English abstract)[13]陈县明. 沙冬青低温诱导基因内含子与AmCIP启动子的克隆及功能分析. 北京林业大学硕士论文, 北京, 2009Chen X M. Cloning and characterization of cold-induced gene introns and the AmCIP promoter in ammopiptanthus mongolicus. MS Thesis of Beijing Forestry University, Beijing, China [in Chinese with English abstract)[14]Stirnberg P, Furner IJ, Leyser, OHM. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J, 2007, 50: 80–94[15]Lau O S, Deng X W. The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci, 2012, 17: 584–593[16]Liu L J, Zhang Y C, Li Q H, Sang Y, Mao J, Lian H L, Yang H Q. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell Online, 2008, 20: 292–306[17]Wei N, Serino G, Deng X W. The COP9 signalosome: more than a protease. Trends Biochem Sci, 2008, 33: 592–600[18]Huang X, Ouyang X, Deng X W. Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol, 2014, 22: 96–103[19]Lay H A, Sudip C, Ning W, Tokitaka O, Alfred B, Deng X W. Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell, 1998, 1: 213–222 |
[1] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[4] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[5] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[6] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[7] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[8] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[9] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[10] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[11] | 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415. |
[12] | 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361. |
[13] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[14] | 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862. |
[15] | 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952. |
|