作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1007-1016.doi: 10.3724/SP.J.1006.2015.01007
邱先进1,2,袁志华1,陈凯4,杜斌1,何文静1,杨隆维1,2,徐建龙3,4,*,邢丹英1,2,*,吕文恺1
QIU Xian-Jin1,2,YUAN Zhi-Hua1,CHEN Kai4,DU Bin1,HE Wen-Jing1,YANG Long-Wei1,2,XU Jian-Long3,4,*,XING Dan-Ying1,2,*,LÜ Wen-Kai1
摘要:
利用272份全球籼稻微核心种质的重测序SNP基因型,对海南三亚、广东深圳、浙江杭州和湖北荆州4个地点收集到的垩白粒率和垩白度性状采用TASSEL软件进行全基因组关联分析,解析籼稻垩白的遗传基础和挖掘影响垩白粒率和垩白度的优异等位基因。结果表明,依据SNP数据,可将籼稻微核心种质分成3个亚群。4个地点分别检测到42个和44个与垩白粒率和垩白度显著关联的位点,位于全部12条染色体上。两个性状分别有21个和19个位点在2个以上环境下同时被检测到,这些位点中有12个位点同时影响垩白粒率和垩白度,11个位点附近都有已克隆的水稻品质相关基因。其中,第5染色体3.3~5.3 Mb区间在4个地点都被检测到与垩白粒率显著关联,以杭州点对垩白粒率的贡献最大,优异等位基因载体品种为IRGC121689;第12染色体的17.5~18.0 Mb区间在三亚和杭州都被检测到与垩白度显著关联,以三亚点的垩白度贡献最大,优异等位基因载体品种为IRGC122285。这些位点和品种资源可作水稻外观品质分子改良的重要基因和品种资源。
[1]周少川, 李宏, 王家生, 黄道强, 谢振文, 卢德成. 华南籼稻早造稻米蒸煮、外观和碾米品质与食味品质的相关性研究. 作物学报, 2002, 28: 397–400Zhou S C, Li H, Wang J S, Huang D Q, Xie Z S, Lu D C. Correlation among eating quality and cooking, apparent and milling qualities of south-China indica rice in the early-cropping season. Acta Agron Sin, 2002, 28: 397–400 (in Chinese with English abstract)[2]江良荣, 李义珍, 王侯聪, 黄育民. 稻米外观品质的研究进展与分子改良策略. 分子植物育种, 2003, 1: 243–255Jiang L R, Li Y Z, Wang H C, Huang Y M. Research progress on appearance quality of rice grain and strategies for its molecular improvement. Mol Plant Breed, 2003, 1: 243–255 (in Chinese with English abstract)[3]徐富贤, 熊洪, 朱永川, 张林, 万先齐, 刘茂, 杨大金. 杂交中稻整精米率的影响因子及其间接鉴定方法研究. 西南农业学报, 2013, 26: 1–6Xu F X, Xiong H, Zhu Y C, Zhang L, Wan X Q, Liu M, Yang D Q. Study on effect factors and indirect evolution method for percentage oh head milled rice of hybrid mid-season rice. Southwest China J Agric Sci, 26: 1–6 (in Chinese with English abstract)[4]中华人民共和国国家标准. 优质稻谷GB/T17891-1999. 北京: 中国标准出版社, 1999. pp 6–12National Standard of the People’ Republic of China. Beijing: Standards Press of China, 1999. pp 6–12 (in Chinese)[5]Wan X Y, Wan J M, Weng J, Liang L, Bi J C, Wang C M, Zhao H Q. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet, 2005, 110: 1334–1346[6]He P, L i S, Qian Q, Ma Y Q, Li J Z, Wang W M, Chen Y, Zhu L H. Genetic analysis of rice grain quality. Theor Appl Genet, 1999, 98: 502–508[7]Tan Y, Li J, Li X J, Yu S B, Xu C G, Zhang Q F. Genetic bases of appearance quality of rice grains in Shanyou63, an elite rice hybrid. Theor Appl Genet, 2000, 101: 823–829[8]周立军, 江玲, 刘喜, 陈红, 陈亮明, 刘世家, 万建民. 水稻千粒重和垩白粒率的QTL及其互作分析. 作物学报, 2009, 35: 255–261Zhou L J, Jiang L, Liu X, Chen H, Chen L M, Liu S J, Wan J M. QTL mapping and interaction analysis for 1000-grain weight and percentage of grains with chalkiness in rice. Acta Agron Sin, 2009, 35: 255–261 (in Chinese with English abstract)[9]Qin Y, Kin S, Sohn J. Genetic analysis and QTL mapping for grain chalkiness characteristics of brown rice (Oryza sativa L.). Genes Genomics, 2009, 31: 155–164[10]Guo T, Liu X L, Wan X Y, Weng J F, Liu S J, Liu X, Chen F M, Li J J, Su N, Wu F Q, Cheng Z J, Guo X P, Lei C L, Wang J L, Jiang L, Wan J M. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol, 2011, 53: 598–607[11]Liu X, Wang Y, Wang S W. QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa). Genet Mol Res, 2012, 11(1): 717–724[12]Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z Q, Liu S J, Zhang L J, Wang J K, Wan J M. Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009, 118: 581–590[13]Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2006, 39: 623–630[14]Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nat Genet, 2014, 46: 398–404[15]Kang H G, Park S H, Matsuoka M, An G. White-core endosperm floury sndosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J, 2005, 42: 901–911[16]Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park JH, Jane JL, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the endosperm. Plant Physiol, 2007, 144: 2009–2023[17]Ryoo N, Yu C, Park C S, Bail M Y, Park IM, Cho M H, Bhoo S H, An G, Hahn T R, Feon J S. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep, 2007, 26: 1083–1095[18]Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370–1374[19]Wang E T, Xu X, Zhang L, Zhang H, Lin L, Wang Q, Li Q, Ge S, Lu B R, Wang W, He Z H. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication. BMC Evol Biol, 2010, 10: 108[20]Woo M O, Ham T H, Ji H S, Choi M S, Jiang W Z, Chu S H, Piao R, Chin J H, Kin J A, Park B S, Seo H S, Jwa N S, McCouch S, Koh H J. Inactive of UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.). Plant J, 2008, 54: 190–204[21]She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fkuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22: 3280–3294[22]Wang Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lü J, Zhou K N, Su N, Bao Y Q, Wan J M. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J, 2010, 64: 812–824[23]张学勇, 童依平, 游光霞, 郝晨阳, 盖红梅, 王兰芬, 李滨, 董玉琛, 李振声. 选择牵连效应分析: 发掘重要基因的新思路. 中国农业科学, 2006, 39: 1526–1535Zhang X Y, Tong Y P, You G X, Hao C Y, Gai H M, Wang L F, Li B, Dong Y C, Li Z S. Hitching effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin, 2006, 39: 1526–1535 (in Chinese with English abstract)[24]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao T, Li CY, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Bulker E S, Qian Q, Zhang Q F, Li J Y, Han B.Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 43: 961–967[25]Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R, Fan D L, Weng Q J, Liu K Y, Zhou T Y, Jing Y F, Si L Z, Dong G J, Huang T, Lu T T, Feng Q, Qian Q, Li J Y, Han B.Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet, 2012, 44: 32–39[26]Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 2: 467[27]Murry M G, Thompson W F. Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res, 1980, 8: 4321[28]Huang S W, Li R Q, Zhang Z H, Li L, Gu X F, Fan W, Lucas W J, Wang X W, Xie B Y, Ni P X, Ren Y Y, Zhu H M, Lin K, Jin W W, Fei Z J, Li G C, Staub J, Kilian J, Vossen E A G, Wu Y, Guo J, He J, Jia Z Q, Ren Y, Tian G, Lu Y, Ruan J, Qian W B, Wang M W, Huang Q F, Li B, Xuan Z L, Cao J J, Asan, Wu Z G, Zhang J B, Cai Q L, Bai Y Q, Zaho B W, Han Y H, Li Y, Li X F, Wang S H, Shi Q X, Liu S Q, Cho W K, Kim J Y, Xu Y, Heller-Uszynska K, Miao H, Cheng Z C, Zhang S P, Wu J, Yang Y H, Kang H X, Li M, Liang H Q, Ren X L, Shi Z B, Wen M, Jian M, Yang H L, Zhang G J, Yang Z T, Chen R, Liu S F, Li J W, Ma L J, Liu H, Zhou Y, Zhao J, Fang X F, Li G Q, Fang L, Li Y R, Liu D Y, Zheng H K, Zhang Y, Qin N, Li Z, Yang G H, Yang S, Bolund L, Kristiansen K, Zheng H C, Li S C, Zhang X Q, Yang H M, Wang J, Sun R F, Zhang B X, Jiang S Z, Wang J, Du Y C, Li S G. The genome of the cucumber, Cucumis sativus L. Nat Genet, 2009, 41: 1275–1281[29]盖钧镒. 试验统计方法. 北京: 中国农业出版社, 2000. pp 157–190Gai J Y. Experimental Statistics Methods. Beijing: Chinese Agriculture Press, 2000. pp 157–190 (in Chinese)[30]Liu K, Muse S V. PowerMarker: Intergrated analysis environment for genetic marker data. Bioinformatics, 2005, 21: 2128–2129[31]Pritchard J K, Stephens M, Donnelly P. Inference of population strcutre using multilocous genotype data. Genetics, 2000, 155: 945–959[32]Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567–1587[33]Falush D, Stephens M, Pritchard J. Inference of population strucutre using multilocus genetype data: dominant markers and null alleles. Mol Ecol Notes, 2007, 7: 574–578[34]Falush D, Stephens M, Pritchard J. Inferring weak population strucutre with the assistance of sample group information. Mol Ecol Resour, 2009, 9: 1322–1332[35]Bradbury P J, Zhang Z, Kroom D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635[36]Glaubitz J C, Casstevens T M, Lu F, Harriman J, Elshire R J, Sun Q, Buckler E S. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PloS ONE, 2014, 9(2): e90346[37]Evanno G, Rsgnaut S, Gounet J. Decting the number of clusters of individuals using the software STRUCTURE: a similation study. Mol Ecol, 2005, 14: 2611–2620[38]Zhang W H, Sun P Y, He Q, Shu F, Wang J, Deng H F. Fine mapping of GS2, a dominant gene for big grain rice. Crop J, 2013, 1: 160–165[39]Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang QF.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet, 2006, 112: 1164–1171[40]Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579–19584[41]Wang Z Y, Wu Z L, Xing Y Y, Zheng F G, Guo X L, Zhang W G, Hong M M. Nucleotide sequence of rice waxy gene. Nucleic Acids Res, 1990, 19(19): 5898[42]Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2014, 45: 707–173[43]Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSOL16 in rice. Nat Genet, 2012, 44: 950–954[44]Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J S. Genetic diversity and population strucutre of a diverse set of rice germplasm for association mapping. Theor Appl Genet, 2010, 121: 475–487[45]蔺万煌, 萧浪涛, 彭克勤, 洪亚辉, 邹冬生. 稻米垩白的形成及其调控. 湖南农业大学学报(自然科学版), 2001, 27(3): 234–239Lin W H, Xiao L T, Peng K Q, Hong K H, Zou D S. Chalkiness formation in rice kernel and its regulation. J Hunan Agric Univ (Nat Sci), 2001, 27(3): 234–239 (in Chinese with English abstract)[46]Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C G, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43:1266–1269 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[4] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[5] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[6] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[9] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[10] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[11] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[12] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[13] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|