欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (12): 1888-1898.doi: 10.3724/SP.J.1006.2015.01888

• 耕作栽培·生理生化 • 上一篇    下一篇

田间条件下棉花叶片缺钾症状及钾含量的时空动态研究

陈乔1,田晓莉1,*,颜为1,王宁1,2   

  1. 1 中国农业大学作物化学控制研究中心 / 植物生理学与生物化学国家重点实验室,北京100193;2中国农业科学院棉花研究所 / 棉花生物学国家重点实验室,河南安阳 455000
  • 收稿日期:2015-05-04 修回日期:2015-07-20 出版日期:2015-12-12 网络出版日期:2015-08-05
  • 通讯作者: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62734550
  • 基金资助:

    本研究由国家自然科学基金项目(31271629)资助。

Spatiotemporal Pattern of Potassium Deficiency Symptoms and K+ Concentration in Cotton Leaf

CHEN Qiao1,TIAN Xiao-Li1,*,YAN Wei1,WANG Ning1,2   

  1. 1 Center of Crop Chemical Control, China Agricultural University / State Key Laboratory of Plant Physiology and Biochemistry, Beijing 100193, China;
    2 Cotton Research Institute, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, China
  • Received:2015-05-04 Revised:2015-07-20 Published:2015-12-12 Published online:2015-08-05
  • Contact: 田晓莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62734550
  • Supported by:

    This research was supported by the National Natural Science Foundation of China (31271629).

摘要:

为了探究棉花中上部叶片首先出现缺钾症状的生理机制,以中棉所41为供试材料,于2013—2014年在中国农业大学上庄实验站缺钾(K)土壤上(速效K含量64.0~70.9 mg kg–1)进行试验,设置对照(不施钾)、低钾(225 kg K2O hm–2)、高钾(375 kg K2O hm–2) 3个钾处理,观察蕾期至花铃后期主茎叶缺K症状的发展动态,并测定了叶片的K+含量。结果表明,棉花叶片缺K症状并不是简单的自下部老叶逐步向上发展,而是从第10节位左右向上推移,并且这种推移呈跳跃式,植株中部某些叶位的叶片一直未出现缺K症状或症状很轻微。棉花这种缺K症状模式与叶片K+含量无必然联系。叶片K+含量基本遵循随叶位上升而增加的规律,符合缺K条件下的一般特征,但这种自下而上增加的幅度及增幅较大的部位在不同生育时期和不同年份存在差异。大部分叶片的K+含量随叶龄增长呈或快或慢的下降趋势,但在蕾期至盛花期某些幼叶和功能叶的K+含量会出现上升现象,如2013年的第7~第14叶、2014年的第13~第16叶。要揭示棉花缺K症状的生理机制,还需要从不同叶片对K+的敏感性、K+在整株水平的再分配等方面深入研究。

关键词: 棉花, 叶片, 缺K症状, K+含量, 时空动态

Abstract:

In order to explore the physiological mechanism of an unusual phenomenon that potassium (K) deficiency symptom first occurs in medium and upper leaves rather than lower leaves of cotton plants, field experiments were conducted at Shangzhuang experimental station of China Agricultural University with a low K soil (64.0 to 70.9 mg kg–1 of available K) in Beijing (40º08′N, 116º10′E) during 2013 and 2014 growing season, using CCRI 41 (Gossypium hirsutum L.; susceptible to K deficiency) as material. There were three potassium treatments: control (no potassium applied), low potassium (225 kg K2O hm–2) and high potassium (375 kg K2O hm–2).We observed potassium deficiency symptoms of the main stem leaves from squaring stage to late stage of flowering and boll period and determined the content of K + of blade. It was found that K deficiency symptoms developed upward from the leaf located at the tenth node or so of mainstem, and those leaves below this node did not show symptoms during the whole season. However, this type of upward development of K deficiency symptoms was not successive, some leaves at medium part of mainstem (the 16th node or so) were always normal or near normal. There was no necessary link between the pattern of K deficiency symptoms and K+ concentration in cotton leaves. The latter generally increased with the leaf position raised from bottom to top, which is in accord with the common pattern under K deficiency. However, the increased magnitude from bottom to top and the leaf position with a larger increase in K+ concentration were different at contrasting growth stages, as well as between 2013 and 2014. The K+ concentration in most leaves decreased faster or slower over time. Nevertheless, some young or functional leaves (e.g. from the 7th to 14th node in 2013, and from the 13th to 16th node in 2014) showed an increase of K+ concentration during the period from squaring stage to peak blooming stage. In conclusion, the spatiotemporal pattern of K deficiency symptoms in cotton leaves is more complicated than expected; and according to K+ concentration in leaves we cannot explain it well. The further study should focus on the susceptibility to K deficiency in leaves at different positions, and K+ redistribution in whole plant.

Key words: Cotton, Leaf, K deficiency symptom, K+ concentration, Spatiotemporal pattern

[1]Hodges S C. Nutrient deficiency disorders. In: Hillocks R J, eds. Cotton diseases. Wallingford: CAB International, 1992. pp 355–403



[2]Rochester I J. Nutrient uptake and export from an Australian cotton field. Nutr Cycl Agroecosys, 2007, 77: 213–223



[3]Gerik T J, Morrison J E, Chichester F W. Effects of controlled traffic on soil physical properties and crop rooting. Agronomy J, 1987, 79: 434–438



[4]Cope J T. Effects of 50 years of fertilization with phosphorus and potassium on soil test levels and yields at locations. Soil Sci Soc Am J, 1981, 45: 342–347



[5]Kerby T A, Adams F. Potassium nutrition of cotton. In: Munson R D eds. Potassium in Agriculture. Madison: ASA, 1985. pp 843–860



[6]Cassman K G, Roberts B A, Kerby T A, Bryant D C, Higashi D C. Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci Soc Am, 1989, 53: 805–812



[7]Swanson C A, Whitney J B. Studies on the translocation of foliar applied sip and other radioisotopes in bean plants. Am J Bot,1953, 40: 816–23



[8]Spanner D C, Prebble J N. The movement of tracers along the petiole of nymplwides peltata. J Exp Bot, 1962, 13: 294–306



[9]Peel A J. The movement of ions from the xylem solution into sieve tubes of willow. J Exp Bot, 1963, 14: 438–447



[10]Greenway H, Pitman M G. Potassium retranslocation in seedlings of hordeum vulgare. Aust J Biol Sci, 1965, 18: 235–247



[11]秦遂初, 章永松. 棉花缺钾症诊断研究. 中国农业科学, 1983, 16(4): 44–50



Qin S C, Zhang Y S. Research of cotton potassium deficiency diagnosis. Sci Agric Sin, 1983, 16(4): 44–50 (in Chinese)



[12]Marschner P. Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. San Diego: Elsevier Academic Press, 2012. pp 299–312



[13]Stromberg L K. Potassium fertilizer on cotton. Calif Agric, 1960, 14: 4–5



[14]Weir B L, Kerby T A, Roberts B A, Mikkelsen D S, Garber R H. Potassium deficiency syndrome of cotton. Calif Agric, 1986, 40: 13–14



[15]Maples R L, Thompson W R, Varvil J. Potassium deficiency in cotton takes on a new look. Better Crops with Plant Food, 1988, 73: 6–9



[16]Oosterhuis D M. Potassium nutrition of cotton in the USA, with particular reference to foliar fertilization. In: Constable G A, Forrester N W, eds. Proceedings of the World Cotton Research Conference-1: Challenging the Future. Melbourne: CSIRO, 1995. pp 133–146



[17]Bednarz C W, Oosterhuis D M. Partitioning of potassium in the cotton plant during the development of a potassium deficiency. J Plant Nutr, 1996, 19: 1629–1638



[18]Wright P R. Premature senescence of cotton (Gossypium hirsutum L.)—Predominantly a potassium disorder caused by an imbalance of source and sink. Plant Soil, 1999, 211: 231–239



[19]Hake K. Overcoming K deficiency in cotton. Solutions, 1991, 35: 38–40



[20]Bednarz C W, Oosterhuis D M, Evans R D. Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot, 1998, 39: 131–139



[21]田晓莉, 王刚卫, 朱睿, 杨培珠, 段留生, 李召虎. 棉花耐低钾基因型筛选条件和指标的研究. 作物学报, 2008, 34: 1435−1443



Tian X L, Wang G W, Zhu R, Yang P Z, Duan L S, Li Z H. Conditions and indicators for screening cotton (Gossypium hirsutum L.) genotypes tolerant to low-potassium. Acta Agron Sin, 2008, 34: 1435−1443 ( in Chinese with English abstract)



[22]鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 18–19, 49



Bao S D. Soil analysis in Agricultural Chemistry. Beijing: China Agriculture Press, 2000. pp 18–19, 49 (in Chinese)



[23]中国农科院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 2013. p 134



Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Cotton Production in China. Shanghai: Shanghai Scientific and Technical Press, 2013. p134 (in Chinese)



[24]胡克林, 李保国, 吕贻忠, 段增强, 李子忠, 李贵桐, 孙丹峰. 中国农业大学上庄实验站土壤理化性质的空间分布特征. 中国农业大学学报, 2006, 11(6): 27–33



Hu K L, Li B G, Lü Y Z, Duan Z Q, Li Z Z, Li G T, Suan D F. Spatial variation of physico-chemical properties in Shangzhuang experimental station of China Agricultural University. J China Agric Univ, 2006, 11(6): 27–33 (in Chinese with English abstract)



[25]谭德水, 金继运, 黄绍文, 高伟. 长期施钾与秸秆还田对华北潮土和褐土区作物产量及土壤钾素的影响. 植物营养与肥料学报, 2008, 14: 106–112



Tan D S, Jin J Y, Huang S W, Gao W. Effect of long-term application of potassium fertilizer and wheat strawto soil on yield of crops and soil potassium in fluvo-aquic soil and brownsoil of northcentral China. Plant Nutr Fert Sci, 2008, 14: 106–112 (in Chinese with English abstract)



[26]Essington M E, Howard D D, Savoy H J, Lessman G M. Potassium fertilization of cotton produced on loess-derived soils. Better Crops with Plant Food, 2002, 86: 13–15



[27]Unruh B L, Silvertooth J C, Clark L J, Nelson J, Malcuit J E. Upland and Pima cotton response to soil and foliar potassium at three Arizona locations. In: Silvertooth J C ed, Cotton, A College of Agriculture Report, University of Arizona, Series P94, 1993. pp 321–332



[28]刘冬梅. 北疆棉田土壤的钾素肥力与棉花的钾素营养研究. 石河子大学硕士学位论文, 新疆石河子, 2008. p 9



Liu D M. The cheracteristics of soil potassium fertility and cotton potassium nutrition status in north xinjiang. MS Thesis of Shihezi University, Shihezi, China, 2008. p 9 (in Chinese with English abstract)



[29]冯正锐. 施钾对不同基因型棉花生长发育及钾素吸收利用的影响. 湖南农业大学硕士学位论文, 湖南长沙, 2010. pp 14–15



Feng Z R. Effeets of potassium fertilizer application on growth and potassium absorption and utilization of different genotypic cotton (Gossypium hirsutum L.). MS Thesis of Hunan Agriculture University, Changsha, China, 2010. pp 14–15 (in Chinese with English abstract)



[30]华元刚, 潘长兵, 贝美容, 茶正早, 罗薇, 林钊沐. 橡胶园砖红壤中磷和钾素径流流失特征研究. 热带作物学报, 2012, 33: 1540–1547



Hua Y G, Pan C B, Bei M R, Cha Z Z, Luo W, Lin Z M. Studies on the phosphorus and potassium loss on rubber plantation soil. Chin J Trop Crop, 2012, 33: 1540–1547 ( in Chinese with English abstract)



[31]高杨, 宋付朋, 马富亮, 邹朋. 模拟降雨条件下3种类型土壤氮磷钾养分流失量的比较. 水土保持学报, 2011, 25(2): 15–18



Gang Y, Song F P, Ma F L, Zou P. Comparison of loss amount of nitrogen, phosphorus and potassium in three types of soil under siimulated rainfall. J Soil Water Conserv, 2011, 25(2): 15–18 (in Chinese with English abstract)



[32]郑炳松, 朱诚, 金松恒. 高级植物生理学. 杭州: 浙江大学出版社, 2011. pp 76–80



Zheng B S, Zhu C, Jin S H. Advanced Plant Physiology. Hangzhou: Zhejiang University Press, 2011. pp 467–602 (in Chinese)



[33]Pettiet J V. Calibration of the mehlich-3 soil test for potassium using leaf analyses and potassium-deficiency symptoms in cotton plants. Commun Soil Sci Plant Anal, 1994, 25: 3115–3127



[34]Reddy K R, Hodges H F, Varco J. Potassium nutrition of cotton. Bulletin - Mississippi Agricultural & Forestry Experiment Station, 2000, 1094: 1–10



[35]汤小仪, 罗文华, 郑泽荣. 棉花钾素营养早期诊断的初步研究. 中国棉花, 1983, 10(6): 18–19



TangX Y, Luo W H, Zheng Z R. The preliminary research on the cotton potassium nutrition in early diagnosis. China Cott, 1983, 10(6): 18–19 (in Chinese)



[36]王刚卫, 田晓莉, 谢湘毅, 李博, 段留生, 王保民, 何钟佩, 李召虎. 土壤缺钾对棉花钾运转和分配的影响. 棉花学报, 2007, 19: 173–178



Wang G W, Tian X L, Xie X Y, Li B, Duan L S, Wang B M, He Z P, Li Z H. Effects of potassium deficiency on the transport and partitioning of potassium in cotton plant. Cotton Sci, 2007, 19: 173–178 (in Chinese with English abstract)



[37]Vreugdenhil D. Source-to-sink gradient of potassium in the phloem. Planta, 1985, 163: 238–240



[38]Bednarz C W, Oosterhuis D M. Physiological changes associated with potassium deficiency in cotton. J Plant Nutr, 1999, 22: 303–313



[39]Zhao D L, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 39: 103–109



[40]Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sc, 2005, 168: 521–530



[41]Cao S, Su L, Fang Y. Evidence for involvement of jasmonic acid in the induction of leaf senescence by potassium deficiency in Arabidopsis. Can J Bot, 2006, 84: 328–333



[42]Halevy J. Growth rate and nutrient uptake of two cotton cultivars grown under irrigation. Agron J, 1976, 68: 701–705



[43]Halevy J, Marani A, Markovitz T. Growth and NPK uptake of high-yielding cotton grown at different nitrogen levels in a permanentplot experiment. Plant Soil, 1987, 103: 39–44



[44]Errington M A. Niterogen, phosphorus and potassium redistribution in high-yielding cotton. PhD Dissertation of Sydney University, 2013. p 12

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析[J]. 作物学报, 2021, 47(7): 1248-1258.
[12] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[13] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!