作物学报 ›› 2016, Vol. 42 ›› Issue (04): 551-560.doi: 10.3724/SP.J.1006.2016.00551
顾骏飞*,周振翔,李志康,戴琪星,孔祥胜,王志琴,杨建昌
GU Jun-Fei*,ZHOU Zhen-Xiang,LI Zhi-Kang,DAI Qi-Xing,KONG Xiang-Sheng,WANG Zhi-Qin,YANG Jian-Chang
摘要:
突变体水稻叶绿素含量仅是其野生型水稻的51%,但是其饱和光合值在低氮、中氮、高氮处理下,却比对照野生型水稻分别高3.7%、20.4%与39.1%。为了探究其生理学机制,分别在大田与盆栽试验中,不同氮肥水平研究了突变体材料与野生型材料的叶片Rubisco酶含量、气孔导度、水通道蛋白表达水平、叶绿素荧光、叶片解剖结构和叶绿体超微结构。叶绿体超微结构表明突变体材料虽然叶绿素含量降低,叶绿体的发育并未受到影响;叶绿素荧光试验结果表明,高光强下,低叶绿素含量突变体并未受到光抑制,光反应电子传递未受影响。气孔导度数据、叶片显微结构观察与水通道蛋白基因表达数据表明叶黄突变体具有较高的气孔与叶肉导度;同时低叶绿素含量突变体内较高的Rubisco酶含量也是其在高光照条件下具有较高光合速率的重要原因。产量数据表明,叶黄突变体虽然生育期短,但其产量水平与对照无显著差别,这可能与其高光强条件下有较高的光合速率有关。上述试验结果表明高叶绿素含量并不是叶片高光合速率的必需条件。在今后的高光效育种中,挑选叶绿素含量适宜的品种更有利于叶片内氮素在其他光合器官中的分配,提高光合效率,最终获得高光效品种。在本研究中使用的叶绿素含量降低突变体在高光效育种中有潜在的研究价值。
[1]Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO2 assimilation in leaves of C3species. Planta, 1980, 149: 78–90 [2]von Caemmerer S, Farquhar G, Berry J. Biochemical model of C3 photosynthesis. In: Laisk A, Nedbal L, Govindjee G, eds. Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems. Dordrecht, The Netherlands: Springer, 2009. pp209–230 [3]Gu J, Yin X, Stomph TJ, Wang H, Struik PC. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot, 2012, 63: 5137–5153 [4]Yin X, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticumaestivum) canopy. Plant Cell Environ, 2009, 32: 448–464 [5]Long SP, Zhu X, Naidu SL, Ort DR. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006,29: 315–330 [6]Gu J, Yin X, Struik PC, Stomph TJ, Wang H. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativa L.) leaves under drought and well watered field conditions. J Exp Bot, 2012,63: 455–469 [7]Zhu X, Long SP, Ort DR. What is the maximum ef?ciency with which photosynthesis can convert solar energy into biomass? CurrOpin Biotech, 2008, 19:153–159 [8]Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol, 2011, 155: 86–92 [9]Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl AcadSci USA, 2015,112: 8529–8536 [10]Ort DR, Zhu XG, Melis A. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol, 2011, 155: 79–85 [11]Nakajima Y, Itayama T. Analysis of photosynthetic productivity of microalgal mass cultures. J ApplPhycol, 2003, 15: 497–505 [12]Kirst H, Formighieri C, Melis A. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. BiochimBiophysActa, 2014, 1837:1653–1664 [13]Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo SH, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant MolBiol, 2006, 62: 325–337 [14]Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472 [15]Wang PR, Gao JX, Wan CM, Zhang FT, Xu ZJ, Huang XQ, Sun XQ, Deng XJ. Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003 [16]Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koi HJ, Yoo SC, Paek NC. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133 [17]Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40 [18]Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant MolBiol, 2005, 57: 805–818 [19]何旎清, 柳周, 张龙, 白苏阳, 田云录, 江玲, 万建民. 一个新的水稻黄绿叶突变体的遗传分析及突变基因的精细定位. 作物学报, 2015, 41: 1155–1163 He N Q, Liu Z, Zhang L, Bai S Y, Tian Y L, Jiang L, Wan J M. Genetic analysis of a new yellow-green mutant and fine-mapping of mutant gene in rice. ActaAgron Sin, 2015, 41: 1155–1163 (in Chinese with English abstract) [20]郭涛, 黄永相, 罗文龙, 黄宣, 王慧, 陈志强, 刘永柱. 水稻叶色白化转绿及多分蘖矮秆突变体hfa-1的基因表达谱分析. 作物学报, 2013, 39: 2123–2134 Guo T, Huang Y X, Luo W L, Huang X, Wang H, Chen Z Q, Liu Y Z. Gene differential expression of a green-revertible albino and high-tillering dwarf mutant hfa-1 by using rice Microarray.ActaAgron Sin, 2013, 39:2123–2134 (in Chinese with English abstract) [21]Holden M. Chlorophyll in Chemistry and Biochemistry of Plant Pigments,2nd edn. Goodwin TW,ed. Vol. 2, London: Academic Press, 1976.pp 1–37 [22]Makino A, Mae T, Chira K.Photosynthesis and rubulose-1,5-bisphosPhate carboxylase/oxygenase in rice leaves from emergence through senescence. Planta, 1985, 166: 414–420 [23]Makino A, MaeT, Chira K. Colorimetric measurement of protein stained with Coomassie Brilliant Blue Ron sodium dodecyl sulfate-polyacrylamide gel electrophoresis by eluting with formamide. AgricBiolChem, 1986, 50: 1911–1912 [24]Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BiochimBiophysActa, 1989,990: 87–92 [25]Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J Exp Bot, 2000,51: 659–668 [26]Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol, 2005, 46: 1568–1577 [27]Yin X, Struik PC. Theoretical reconsiderations when estimating the mesophyll conductance to CO2 diffusion in leaves of C3 plants by analysis of combined gas exchange and chlorophyll fluorescence measurements. Plant Cell Environ, 2009, 32: 1513–1524 (corrigendum: Plant Cell Environ, 2009, 33: 1595) [28]Yin X, Struik PC. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. J Exp Bot, 2015. DOI: 10.1093/jxb/erv371 [29]Zhu X, Sturler E D, Long SP. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol, 2007, 145: 513–526 [30]Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol, 2005, 138: 451–460 [31]Tamoi M, Nagaoka M, Miyagawa Y, Shigeoka S. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon ?ow in the Calvin cycle in transgenic plants. Plant Cell Physiol, 2006, 47: 380–390 [32]Peng S, Khush GS, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32–38 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|