欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (09): 1261-1272.doi: 10.3724/SP.J.1006.2016.01261

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

一个新的水稻D1基因等位突变体的遗传鉴定与基因功能分析

王翠红,马建,王帅,田鹏,岂长燕,赵志超,王久林,王洁,程治军,张欣,郭秀平,雷财林*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程,北京 100081
  • 收稿日期:2016-03-21 修回日期:2016-06-20 出版日期:2016-09-12 网络出版日期:2016-06-27
  • 通讯作者: 雷财林, E-mail: leicailin@caas.cn
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费(20120314)和中国农业科学院科技创新团队项目“作物功能基因组”资助。

Genetic Identification of a New D1-allelic Mutant and Analysis of Its Gene Function in Rice

WANG Cui-Hong,MA Jian,WANG Shuai,TIAN Peng,QI Chang-Yan,ZHAO Zhi-Chao,WANG Jiu-Lin,WANG Jie,CHENG Zhi-Jun,ZHANG Xin,GUO Xiu-Ping,LEI Cai-Lin*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-03-21 Revised:2016-06-20 Published:2016-09-12 Published online:2016-06-27
  • Contact: 雷财林, E-mail: leicailin@caas.cn
  • Supported by:

    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest Program of China (Grant No. 20120314) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences “Crop Functional Genomics”.

摘要:

株高是影响水稻产量的一个重要性状。本研究从水稻稻瘟病普感品种丽江新团黑谷(LTH)经甲基磺酸乙酯(EMS)诱变群体中分离出一个遗传稳定的小粒矮化突变体LTH-m3。该突变体是赤霉素(GA)和油菜素内酯(BR)相关突变体,它对外源GA(GA3)不敏感,对外源BR(eBL)的敏感性较野生型显著降低。遗传分析、基因克隆和转基因互补实验确认,该突变体是一个新的d1基因等位突变体,其D1基因在第6个外显子与内含子接合处发生单碱基突变(G2522 →A2522),导致第6外显子被选择性剪切及Gα蛋白翻译提前终止,从而造成LTH-m3小粒矮化突变表型。进一步的研究表明,该突变体D1基因突变引起SD1SLR1等基因表达的显著改变,因而影响植株细胞内GA和BR反馈调节功能和信号传递。突变体LTH-m3弥补了LTH植株过高、茎秆软和极易倒伏等缺陷,可作为LTH的改良系在今后水稻稻瘟病研究中加以利用,其功能突变基因的鉴定为深入研究水稻Gα蛋白的功能及激素信号途径提供了新的材料。

关键词: 水稻, 突变体, 矮秆基因, 基因克隆, 基因功能

Abstract:

Plant height is one of important traits for rice yield. One genetically stable rice mutant, LTH-m3, was isolated from the cv. Lijiangxintuanheigu (LTH)-derived mutant population by mutagenesis using ethylmethane sulfonate (EMS). LTH-m3 was involved in the pathway of gibberellic acid (GA) and brassinosteroid (BR), and showed no sensitiveness to exogenous GA (GA3) and significantly reduced sensitiveness to exogenous BR (eBL) compared with the wild type. The genetic analysis, gene cloning and transgenic complementary test confirmed that LTH-m3 was a new d1-allelic mutant with small grain and dwarf phenotypes, and a single base was mutated (G2522→A2522) in the functional dwarf gene D1 at the conjunction site of its sixth exon and intron, which caused excision of the sixth exon in mRNA and premature termination of the D1 encoded Gα protein, resulting in mutated phenotypes in the mutant. The further study showed that the D1 mutation caused obvious expression change of some dwarf genes such as SD1 and SLR1 in the mutant, and could affect the GA and BR pathways in their feedback regulations and signaling transductions in plant cells. The mutant overcome the defects of the universally blast-susceptible cv. LTH, such as too tall plant, soft stem and easy lodging, and could be utilized as an improved substitute of LTH in the future rice blast researches. The mutated D1 gene identified from the LTH-m3 mutant may be useful for further study of Gα functions and signaling pathway of GA and BR.

Key words: Rice, Mutant, Dwarf gene, Gene cloning, Gene function

[1]  Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701–702
[2]  Khush G. Green revolution: Preparing for the 21st century. Genome, 1999, 42: 646–655
[3]  Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402–16409
[4]  牛静, 陈赛华, 赵婕妤, 曾召琼, 蔡茂红, 周亮, 刘喜, 江玲, 万建民. 水稻株型突变体rad-1和rad-2的鉴定与功能基因克隆. 作物学报, 2015, 41: 1621–1631
Niu J, Chen S H, Zhao J Y, Zeng Z Q, Cai M H, Zhou L, Liu X, Jiang L, Wan J M. Identification and map- based cloning of rad-1 and rad-2, two rice architecture determinant mutants. Acta Agron Sin, 2015, 41: 1621–1631 (in Chinese with English abstract)
[5]  胡运高, 杨国涛, 郭连安, 钦鹏, 陈水军, 李世贵. 水稻多蘖突变体bf370的遗传分析和基因定位. 中国水稻科学, 2015, 29: 357–362
Hu Y G, Yang G T, Guo L A, Qin P, Chen Y J, Li S G. Genetic analysis and mapping of a dwarf and high-tillering mutant bf370 in rice. Chin J Rice Sci, 2015, 29: 357–362 (in Chinese with English abstract)
[6]  Nagano H, Onishi K, Ogasawara M, Horiuchi Y, Sano Y. Genealogy of the “Green Revolution” gene in rice. Genes Genet Syst, 2005, 80: 1–6
[7]  罗茂春, 赵政, 夏令, 郭迟鸣, 陈亮. 水稻矮秆基因d-ss的遗传分析与克隆. 厦门大学学报(自然科学版), 2013, 52: 684–689
Luo M C, Zhao Z, Xia L, Guo C M, Chen L. Rice dwarfing genes and genetic analysis and cloning of d-ss. J Xiamen Univ (Nat Sci), 2013, 52: 684–689 (in Chinese with English abstract)
[8]  Chang T. Genetics and breeding. In: Westport. Rice: Production and Utilization. Connecticut: AVI Press, 1980. pp 146–187
[9]  Kimijima O, Tanisaka T, Kinoshita T. Gene symbols for dwarfness. Rice Genet Newsl, 1995, 13: 19–24
[10] Chen H, Zhou C, Xing Y. A new rice dwarf1 mutant caused by a frame-shift mutation. Hereditas, 2011, 33(4): 397–403
[11] Peng J, Richards D, Hartley N, Murphy G, Devos K, Flintham J, Beales J, Fish L, Worland A, Pelica F, Sudhakar D, Christou P, Snape J, Gale M, Harberd N.“Green revolution” genes encode mutant gibberellins response modulators. Nature, 1999, 400: 256–261
[12] Yuan L. Super hybrid rice. Chin Rice Res Newsl, 2000, 8: 13–15
[13] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043–9048
[14] Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M. Cloning and functional analysis of two gibberellin 3β- hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA, 2001, 98: 8909–8914
[15] Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Lwahori S, Matsouka M, Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol, 2003, 1: 909–913
[16] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semi-dwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11–17
[17] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol, 2004, 54: 533–547
[18] Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander L N, Kamiya Y, Yamaguchi S, He Z. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442–456[
19] Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y I, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698
[20] Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J, 2004, 37: 626–634
[21] Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J, 2012, 71: 443–453
[22] Shimada A, Ueguchi-Tanaka M, Sakamoto T. The rice spindly gene functions as a negative regulator of gibberellins signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J, 2006, 48: 390–402
[23] Tomonobu T, Takuma K, Yuko H, Masami U, Shiho A, Kazunori O, Jinichiro K, Wataru M, Hisakazu Y. Cloning and characterization of cDNAs encoding ent-copaly diphosphate synthases in wheat: insight into the evolution of rice phytoalexin biosynthetic genes. Biosci Biotechnol Biochem, 2009, 73: 772–775
[24] Mallikarjuna R K, Zhang Y S, Yu S B, Yan W H, Xing Y Z. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to green revolution gene sd1. Theor Appl Genet, 2011, 123: 705–714
[25] Liu Y J, Xu Y Y, Xiao J, Ma Q B, Li D, Xue Z, Chong K. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol, 2011, 168: 1098–1105
[26] Huang J, Tang D, Shen Y, Qin B X, Hong L L, You A Q, Li M, Wang X, Yu H X, Gu M H, Cheng Z K. Activation of gibberellins 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics, 2010, 37: 23–26
[27] Marcia M, Zhou X, Zhu Q, Dennis E, Upadhyaya N. Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep, 2005, 23: 819–833
[28] Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M. Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA, 2000, 97: 11638–11643
[29] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900–2910
[30] Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. A rice semi-dwarf gene, Tan-Ginbozu, encode the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol biol, 2004, 54: 533–547
[31] Nakagawa H, Atsunori T, Takanari T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Masaki M. Short grain1 decrease organ elongation and brassinosteroid response in rice. Plant Physiol, 2012, 158: 1208–1219
[32] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y H, Qian Q, Zhu L H, Chu C C. Dwarf and low-tillering, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009, 58: 803–816
[33] Bai M, Zhang L, Srinivas S G, Zhu S W, Song W Y, Chong K, Wang Z. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Natl Acad Sci USA, 2007, 104: 13839–3844
[34] Hu X, Qian Q, Xu T, Zhang E, Dong G J, Gao T, Qi X, Xue Y B. The U-box E3 ubiquitin ligase TUD1 funcations with a heterotrimeric Gα-subunit to brassinosteroid-mediated growth in rice. PLos Genet, 2013, 9(3): e1003391
[35] Sui P F, Jin J, Ye S, Mu C, Gao J, Feng H Y, Shen W H, Yu Y, Dong A W. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J, 2012, 70: 340–347
[36] Jiang Y H, Bao L, So-Yoon J, Seong-Ki K, Xu C G, Li X H, Zhang Q F. XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J, 2012, 70: 398–408
[37] Yang G, Nakamura H, Ichikawa H, Kitano H, Komatsu S. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of  rice. Phytochemistry, 2006, 67: 1442–1454
[38] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776–790
[39] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50:1416 –1424
[40] Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591–1606
[41] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013, 73: 676–688
[42] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029
[43] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698
[44] Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525
[45] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C, Ma Y, Zhang Q R, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4: 1566
[46] Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410
[47] Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y. Function of the α subunit of rice heterotrimeric G protein in Brassinosteroid signaling. Plant Cell Physiol, 2009, 50: 161–172
[48] Ashikari M, Wu JZ, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284–10289
[49] Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA, 1999, 96: 7575–7580
[50] Assmann S M. G Protein regulation of disease resistance during infection of rice with rice blast fungus. Sci STKE, 2005, 310: 13
[51] Jones A M, Assmann S M. Plants: the latest model system for G-protein research. EMBO Rep, 2004, 5: 572–578
[52] Assmann S M. G Proteins go green: A plant G protein signaling FAQ sheet. Science, 2005, 310: 71–73
[53] Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci USA, 2002, 99: 13307–13312
[54] Lieberherr D, Thao N, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol, 2005, 138: 1644–1652
[55] Iwasaki Y, Fujisawa Y, Kato H. Function of heterotrimeric G protein in gibberellin signaling. Plant Growth Regul, 2003, 22: 126–133
[56] Ling Z, Mew T, Wang J, Lei C, Hang N. Development of Chinese near-isogenic lines of rice and their differentiating ability of pathogenic races of blast fungus. Chin Agric Sci, 2001, 1: 50–56
[57] Kobayashi N, Telebanco-Yanoria M J, Tsunematsu H, Kato H, Imbe T, Fukuta Y. Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jpn Agric Res Q, 2007, 41: 31–37
[58] Oki K, Inaba N, Kitagawa K, Kitano H, Takahashi S, Fujisawa Y, Kato H, Iwasaki Y. Study of novel d1 alleles, defective mutants of the α subunit of heterotrimeric G-protein in rice. Genes Genet Syst, 2009, 84: 35–42
[59] 纪现军, 叶胜海, 周涯, 修芬连, 邓晓梅, 尚海漩, 刘继云, 陈萍萍, 李小华, 金庆生, 张小明. 水稻矮秆突变体Zj88d的鉴定与基因定位. 中国水稻科学, 2013, 27: 35–40
Ji X J, Ye S H, Zhou Y, Xiu F L, Deng X M, Shang H X, Liu J Y, Chen P P Li X H, Jin Q S, Zhang X M. Characterization and gene mapping of a dwarf mutant Zj88d in rice. Chin J Rice Sci, 2013, 27: 35–40 (in Chinese with English abstract)
[60] 侯雷, 袁守江, 尹亮, 赵金凤, 万国峰, 张文会, 李学勇. 两个新水稻Dwarf18基因强等位突变体的表型分析及分子鉴定. 作物学报, 2013, 38: 1416–1424
Hou L, Yuan S J, Yin L, Zhao J F, Wan G F, Zhang W H, Li X Y. Phenotypic analysis and molecular characterization of two allelic mutants of the dwarf18 gene in rice. Acta Agron Sin, 2013, 38: 1416–1424 (in Chinese with English abstract)
[61] 马良勇, 包劲松, 李西明, 朱旭东, 季芝娟, 夏英武, 杨长登. 水稻矮生基因的克隆和功能研究进展. 中国水稻科学, 2009, 23: 1–11
Ma L Y, Bao J S, Li X M, Zhu X D, Ji Z J, Xia Y W, Yang C D. Progress on cloning and functional analysis of dwarfism related genes in rice. Chin J Rice Sci, 2009, 23: 1–11 (in Chinese with English abstract)

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[15] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!