作物学报 ›› 2018, Vol. 44 ›› Issue (04): 493-504.doi: 10.3724/SP.J.1006.2018.00493
吴庆飞1,**(), 秦磊1,**(), 董雷2, 丁泽红3, 李平华1,*(), 杜柏娟1,*()
Qing-Fei WU1,**(), Lei QIN1,**(), Lei DONG2, Ze-Hong DING3, Ping-Hua LI1,*(), Bai-Juan DU1,*()
摘要:
玉米是典型的C4作物, 其光合作用由花环结构的两种细胞(叶肉细胞和维管束鞘细胞)共同完成。玉米hcf136 (high chlorophyll fluorescence 136)突变体叶肉细胞叶绿体不能形成基粒从而丧失了PSII活性, 但维管束鞘细胞的叶绿体发育不受影响, 是研究玉米C4光合机理的好材料。本研究利用转录组测序(RNA-Seq)技术, 通过对高光和低光下野生型和hcf136突变体不同叶片部位进行转录组分析发现, PSII相关基因的转录未发生明显差异, 表明PSII复合体的缺失是非转录水平变化所引起。此外, 突变体中淀粉合成受阻, 糖降解、糖转运及Cu2+转运等代谢过程加剧, 且一些转录因子表达发生显著变化。该结果对进一步深入研究玉米HCF136基因的功能提供了参考。
[1] | Furbank R T, Hatch M D.Mechanism of C4 photosynthesis: the size and composition of the inorganic carbon pool in bundle sheath cells.Plant Physiol, 1987, 85: 958-964 |
[2] | Hatch M D.C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure.Biochim Biophy Acta, 1987, 895: 81-106 |
[3] | Edwards G E, Franceschi V R, Ku M S, Voznesenskaya E V, Pyankov V I, Andreo C S.Compartmentation of photosynthesis in cells and tissues of C4 plants.J Exp Bot, 2001, 52: 577-590 |
[4] | Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E.Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.Plant Cell, 2010, 22: 3509-3542 |
[5] | Gregory R P, Droppa M, Horváth G, Evans E H.A comparison based on delayed light emission and fluorescence induction of intact chloroplasts isolated from mesophyll protoplasts and bundle-sheath cells of maize.Biochem J, 1979, 180: 253-256 |
[6] | Takabayashi A, Kishine M, Asada K, Endo T, Sato F.Differential use of two cyclic electron flows around photo-system I for driving CO2-concentration mechanism in C4 photosynthesis.Proc Natl Acad Sci USA, 2005, 102: 16898-16903 |
[7] | Richard R A.Selectable traits to increase crop photosynthesis and yield of grain crops.J Exp Bot, 2000, 51: 447-458 |
[8] | Zhu X G, Long S P, Ort D R.What is the maximum efficiency with which photosynthesis can convert solar energy into biomass.Curr Opin Biotechnol, 2008, 19: 153-159 |
[9] | Stern D B, Hanson M R, Barkan A.Genetics and genomics of chloroplast biogenesis: maize as a model system.Trends Plant Sci, 2004, 9: 293-301 |
[10] | 李保珠, 赵孝亮, 彭雷. 植物叶绿体发育及调控研究进展. 植物学报, 2014, 49: 337-345 |
Li B Z, Zhao X L, Peng L.Research advances in the development and regulation of plant chloroplasts.Chin Bull Bot, 2014, 49: 337-345 (in Chinese with English abstract) | |
[11] | Belcher S, Williams-Carrier R, Stiffler N, Barkan A.Large-scale genetic analysis of chloroplast biogenesis in maize.Biochim Biophys Acta, 2015, 1847: 1004-1016 |
[12] | Covshoff S, Majeran W, Liu P, Kolkman J M, van Wijk K J, Brutnell T P. Deregulation of maize C4 photosynthetic development in a mesophyll cell-defective mutant.Plant Physiol, 2008, 146: 1469-1481 |
[13] | Plucken H, Muller B, Grohmann D, Westhoff P, Eichacker L A.The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett, 2002, 532: 85-90 |
[14] | Schuster S C.Next-generation sequencing transforms today’s biology.Nat Methods, 2008, 5: 16-18 |
[15] | Chang Y M, Liu W Y, Shi A C, Shen M N, Lu C H, Lu M Y.Characterizing regulatory and functional differentiation between maize mesophyll and bundle sheath cells by transcriptomic analysis.Plant Physiol, 2012, 160: 165-177 |
[16] | John C R, Smith-Unna R D, Woodfield H, Covshoff S, Hibberd J M. Evolutionary convergence of cell-specific gene expression in in-dependent lineages of C4 grasses.Plant Physiol, 2014, 165: 62-75 |
[17] | Tausta S L, Li P, Si Y T, Gandotra N, Liu P, Sun Q.Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. J Exp Bot, 2014, 65: 3543-3555 |
[18] | 江芳, 丁泽红, 董雷, 李平华. 玉米光合突变体bsd2 (bundle sheath defective II)的转录组分析. 植物生理学报, 2016, 52: 1214-1222 |
Jiang F, Ding Z H, Dong L, Li P H.Transcriptome analysis on the maize photosynthetic mutant bsd2 (bundle sheath defective II). Plant Physiol J, 2016, 52: 1214-1222 (in Chinese with English abstract) | |
[19] | Porra R J.The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophyll a and b. Photosynth Res, 2002, 73: 149-156 |
[20] | Wang L, Si Y, Dedow L K, Shao Y, Liu P, Brutnell T P.A low cost library construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex RNA-seq.PLoS One, 2011, 6: e26426 |
[21] | Robinson M D, McCarthy D J, Smyth G K. Edge R: a bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics, 2010, 26: 139-140 |
[22] | Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S L, Kebrom T H, Provart N, Patel R, Brutnell T P.The developmental dynamics of the maize leaf transcriptome.Nat Genet, 2010, 42: 1060-1067 |
[23] | Suresh V K, Tellabati M, Nelli R K, White G A, Perez B B, Sebastian S, Slomka M J, Brown I H, Stephen P D, Kin C C.18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells.Virl J, 2012, 9: 230 |
[24] | Yruela I, Montoya G, Picorel R.The inhibitory mechanism of Cu(II) on the photosystem II electron transport from higher plants.Photosynth Res, 1992, 33: 227-233 |
[25] | Ouzounidou G, Mousbakas M, Karataglis S.Responses of maize (Zea mays L.) plants to copper stress: IR growth, mineral content and ultrastructure of roots. Environ Exp Bot, 1995, 2: 167-176 |
[26] | Meurer J, Plücken H, Kowallik K V, Westhoff P.A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J, 1998, 17: 5286-5297 |
[27] | Maxwell K, Johnson G N.Chlorophyll fluorescence: a practical guide.J Exp Bot, 2000, 51: 659-668 |
[28] | Meurer J, Meierhoff K, Westhoff P.Isolation of high-chlorophyll- fluorescence mutants of Arabidopsis thaliana and their characterization by spectroscopy, immunoblotting and Northern hybridization.Planta, 1996, 198: 385-396 |
[29] | Varotto C, Pesaresi P, Maiwald D.Identification of photosynthetic mutants of Arabidopsis by automatic screening for altered effective quantum yield of photosystem II.Photosynthetica, 2000, 38: 497-504 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|