欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2440-2449.doi: 10.3724/SP.J.1006.2021.03046

• 耕作栽培·生理生化 • 上一篇    下一篇

中国玉米机械粒收质量主要指标分析

王克如(), 李璐璐, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张国强, 侯梁宇, 李少昆*()   

  1. 中国农业科学院作物科学研究所 / 农业部作物生理生态重点实验室, 北京 100081
  • 收稿日期:2020-07-25 接受日期:2021-04-14 出版日期:2021-12-12 网络出版日期:2021-07-09
  • 通讯作者: 李少昆
  • 作者简介:E-mail: wangkeru@caas.cn, Tel: 010-82108595
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-02-25);中国农业科学院农业科技创新工程项目

Analysis of main quality index of corn harvesting with combine in China

WANG Ke-Ru(), LI Lu-Lu, GAO Shang, WANG Yi-Zhou, HUANG Zhao-Fu, XIE Rui-Zhi, MING Bo, HOU Peng, XUE Jun, ZHANG Guo-Qiang, HOU Liang-Yu, LI Shao-Kun*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2020-07-25 Accepted:2021-04-14 Published:2021-12-12 Published online:2021-07-09
  • Contact: LI Shao-Kun
  • Supported by:
    China Agriculture Research System(CARS-02-25);Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

摘要:

机械粒收是中国玉米生产技术的重大变革与发展方向, 团队于2012—2019年在玉米主产区21个省(市区)布设了155个点次的粒收试验与示范, 开展适宜机械粒收品种的筛选和粒收质量调查, 共测试了865个玉米品种(组合), 获取了2987组8961个机械粒收质量样本数据, 分析表明, 收获籽粒的平均含水率为25.91%, 平均破碎率为7.96%, 杂质率为1.18%, 总损失率为3.54%, 其中落穗损失占76.5%, 是收获损失的主要部分。对比2012—2015年测试数据, 近年我国玉米收获质量得到明显改善, 其中, 2015年以来收获期籽粒含水率平均每年下降0.78%、破碎率平均每年下降0.51%。与美国玉米收获质量相比, 收获时籽粒含水率高9.5%, 破碎率、杂质率也明显高于美国。收获质量指标间的相关分析表明, 破碎率、杂质率均与籽粒含水率呈极显著正相关, 籽粒含水率在19.06%时收获破碎率最低, 收获期籽粒含水率高仍是籽粒破碎率高的主要原因。不同生态区间以黄淮海夏播玉米收获时籽粒含水率和破碎率最高、华北春玉米最低, 西北和东北春玉米居中。进一步选育脱水快、收获时含水率低、后期站秆性能好的品种, 推广品种脱水与区域气候配置技术, 改进收获机械, 并适期收获是降低破碎率、损失率的主要方向。

关键词: 玉米, 机械粒收, 收获质量, 籽粒水分, 破碎率

Abstract:

Mechanical harvest of corn grains is of major importance for China’s corn production. In this study, we used data from a total of 155 experimental sites to study mechanical grain harvest in 21 major corn producing provinces, cities, or autonomous regions in China from 2012 to 2019. Corn hybrids suitable for mechanical grain harvest were selected and field tests of mechanical harvest quality were carried out. A total of 865 corn varieties (hybrid combinations) were tested, and 8961 samples of mechanically harvested grain were obtained from 2987 tests. The harvested grains were assessed for grain quality to provide a basis for developing mechanical harvest corn in China. Results showed that, on the average, moisture content of harvested grain was 25.91%, grain breakage rate was 7.96%, impurity rate was 1.18%, and loss rate was 3.54%. Additionally, the ear loss accounted for 76.5% of the total harvest losses. Compared with the test data from 2012 to 2015, the quality of corn harvest in China had been significantly improved in recent years, with the average moisture content of harvested grains decreasing by an average of 0.78 percentage point every year and the average grain breakage rate decreasing by an average of 0.51 percent every year between 2015 and 2019. Compared with data of corn harvest of the United States between 2011 and 2019, the average moisture content of harvested corn from the present study was 9.5 percentage points higher, and the breakage rate and impurity rate were also significantly higher. Further analysis showed that both grain breakage rate and impurity rate were positively correlated with the grain moisture content. Additionally, grain breakage rate was the lowest when grain moisture content was 19.06%. Cross regarding different corn producing regions, the grain moisture content and grain breakage rate were the highest in the Huang-Huai-Hai summer corn region and lowest in the Northern China spring corn region, with medium values in the Northwestern China spring corn region and the Northeastern China spring corn region. The findings suggested that, in China, it was necessary to reduce the grain breakage rate, impurity rate, combine losses, and improve the harvest quality by breeding corn varieties with fast grain dehydration, low grain moisture content, and strong stalk stand ability at harvest stage, as well as by appropriately matching the dehydration characteristics of corn varieties with regional climate characteristics, improving the performance of harvesting machinery, and harvesting at the most appropriate time.

Key words: corn, mechanical harvesting, harvest quality, grain moisture content, grain breakage rate

图1

试验示范与测试点在各玉米产区的分布(2012-2019)"

表1

2012-2019年玉米机械粒收质量统计"

年份
Year
样本量
No. of samples
收获时籽粒含水率
Grain moisture at
harvest (%)
破碎率
Broken corn (%)
杂质率
Foreign
material (%)
落粒量
Grain loss
(kg hm-2)
落穗量
Grain loss
(kg hm-2)
总损失量
Whole loss
(kg hm-2)
总损失率
Whole loss rate (%)
2012 84 21.71 7.85 0.29 103.1 126.0 229.1 1.47
2013 128 25.00 5.34 1.12 256.8 332.4 268.4 1.95
2014 231 26.31 8.72 2.04 79.8 402.0 338.3 4.10
2015 436 26.85 8.43 1.16 163.1 282.8 331.2 2.93
2016 390 26.71 8.64 1.01 62.0 332.9 228.9 2.16
2017 817 27.28 8.79 1.46 86.4 442.1 327.5 3.31
2018 465 24.85 7.83 1.25 140.0 434.9 541.2 4.81
2019 436 23.88 6.48 0.76 127.1 287.4 344.9 5.36
平均值Average 25.91 7.96 1.18 113.6 351.2 345.2 3.54
最大值Max. 44.60 33.94 13.24 3133.8 8960.1 9288.5 58.88
最小值Min. 10.63 0.05 0.00 0.0 0.0 0.0 0.00
极差Range 33.97 33.89 13.24 3133.8 8960.1 9288.5 58.88
标准误SE 5.03 4.81 1.53 12.1 47.1 42.2 6.42
变异系数CV (%) 19.40 60.38 129.82 159.84 200.99 183.45 181.53

图2

2012-2019年机械粒收玉米籽粒含水率、破碎率频次分布图(n=2987)"

图3

收获期不同产区玉米籽粒含水率比较(2012-2019) 红线为适合籽粒收获的含水率上限。"

图4

不同产区玉米籽粒破碎率比较(2012-2019)"

图5

不同产区玉米杂质率比较(2012-2019)"

图6

不同产区玉米机械粒收损失率比较(2012-2019)"

表2

籽粒含水率与破碎率、杂质率、损失率间的相关关系(2012-2019)"

破碎率
Broken corn
杂质率
Foreign material
落粒率
Grain loss rate
落穗率
Ear loss rate
总损失率
Whole loss rate
籽粒含水率Grain moisture content 0.480** 0.386** -0.031ns -0.071** -0.103**
破碎率Broken corn 0.211** -0.022ns 0.101** 0.039ns
杂质率Foreign material 0.073** 0.071** 0.036ns
落粒率Grains loss 0.180** 0.567**
落穗率Ears loss 0.931**

图7

玉米籽粒含水率与破碎率的关系(2012-2019年, n=2987)"

图8

2015-2019年玉米收获期籽粒水分及破碎率的变化趋势"

表3

2011-2019年美国玉米机械粒收质量主要指标统计"

年份
Years
样本量
No. of samples
含水率
Moisture
破碎率
Broken corn
杂质率
Foreign material
总损失率
Total damage
应力裂纹粒率
Stress cracks
完整粒率
Whole kernels
2011 474 15.6 (9.5-22.0) 0.8 (0.0-10.1) 0.2 (0.0-3.0) 1.1 (0.0-12.0) 3 (0-40) 93.8 (57.0-99.8)
2012 566 15.3 (8.9-24.7) 0.7 (0.1-4.8) 0.2 (0.0-2.5) 0.8 (0.0-12.7) 4 (0-63) 94.4 (68.0-100.0)
2013 610 17.7 (10.9-28.2) 0.7 (0.1-3.9) 0.2 (0.0-2.5) 0.9 (0.0-13.6) 9 (0-86) 92.4 (73.6-99.6)
2014 629 16.6 (10.9-29.9) 0.6 (0.1-3.3) 0.2 (0.0-5.5) 1.7 (0.0-17.3) 8 (0-100) 93.6 (63.6-99.8)
2015 620 15.7 (11.0-23.6) 0.4 (0.0-7.5) 0.3 (0.0-4.5) 1.4 (0.0-13.2) 3 (0-75) 94.9 (78.4-99.8)
2016 624 16.1 (11.2-23.7) 0.5 (0.0-3.8) 0.1 (0.0-1.6) 2.6 (0.0-23.1) 4 (0-84) 95.2 (80.6-100.0)
2017 627 16.6 (9.0-24.4) 0.6 (0.0-3.5) 0.2 (0.0-6.3) 1.3 (0.0-13.6) 5 (0-90) 89.9 (67.0-99.2)
2018 618 16.6 (10.1-25.0) 0.5 (0.0-3.6) 0.2 (0.0-7.3) 1.5 (0.0-19.3) 5 (0-88) 93.0 (66.0-98.6)
2019 623 17.5 (11.0-30.0) 0.7 (0.2-5.3) 0.3 (0.0-3.3) 2.7 (0.0-50.5) 8 (0-95) 90.8 (74.7-97.6)
平均值Average 16.4 0.6 0.2 1.6 6 93.1
最大值Max. 30.0 10.1 7.3 23.1 100 100.0
最小值Min. 8.9 0.0 0.0 0.0 0 57.0
极差Range 21.1 10.1 7.3 23.1 100 43.0
标准误SE 0.8 0.1 0.1 0.7 2 1.8
变异系数CV (%) 5.03 20.04 25.44 43.85 42.03 1.94
[1] 李少昆. 美国玉米生产特点及启示. 玉米科学, 2013, 21(3):1-5.
Li S K. Characteristics and enlightenment of corn production technologies in the U.S. J Maize Sci, 2013, 21(3):1-5 (in Chinese with English abstract).
[2] Yang L, Cui T, Qu Z, Li K H, Yin X W, Han D D, Yan B X, Zhao D Y, Zhang D X. Development and application of mechanized maize harvesters. Int J Agric Biol Eng, 2016, 9:15-28.
[3] Hilbert J H. Machine and Machine Operator Characteristics Associated with Corn Harvest Kernel Damage. PhD Dissertation of Iowa State University, Iowa, America, 1972.
[4] Miu P I. Combine Harvesters: Theory, Modeling, and Design. BocaTaton: CRC Press Inc. 2015. pp 3-25.
[5] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械粒收质量的因素分析. 作物杂志, 2013, (4):116-119.
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K. Factors affecting corn mechanically harvesting grain quality. Crops, 2013, (4):116-119 (in Chinese with English abstract).
[6] 李少昆, 谢瑞芝, 王克如, 明博, 侯鹏. 专题导读加强籽粒脱水与植株倒伏特性研究、推动玉米机械粒收技术应用. 作物学报, 2018, 44:1743-1746.
Li S K, Xie R Z, Wang K R, Ming B, Hou P. Editorial: strengthening the research of grain dehydration and lodging characteristics to promote the application of corn mechanical grain harvest technology. Acta Agron Sin, 2018, 44:1743-1746 (in Chinese with English abstract).
[7] 李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间籽粒重量与含水率变化研究. 中国农业科学, 2017, 50:2052-2060.
Li L L, Wang K R, Xie R Z, Ming B, Zhao L, Li S S, Hou P, Li S K. Study on corn grain weight and moisture content after physiological maturity in field. Sci Agric Sin, 2017, 50:2052-2060 (in Chinese with English abstract).
[8] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018, 51:1855-1867.
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Differences of ear characters in corn and their effects on grain dehydration. Sci Agric Sin, 2018, 51:1855-1867 (in Chinese with English abstract).
[9] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44:1755-1763.
Gao S, Ming B, Li L L, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer corn. Acta Agron Sin, 2018, 44:1755-1763 (in Chinese with English abstract).
[10] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer corn and its relationship with grain filling. Sci Agric Sin, 2018, 51:1878-1889 (in Chinese with English abstract).
[11] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44:1764-1773.
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer corn in the Yellow-Huai-Hai Rivers Plain. Acta Agron Sin, 2018, 44:1764-1773 (in Chinese with English abstract).
[12] 张万旭, 王克如, 谢瑞芝, 侯鹏, 明博, 刘朝巍, 肖春花, 张国强, 陈江鲁, 杨京京, 柳枫贺, 李少昆. 玉米机械收获子粒破碎率与含水率关系的品种间差异. 玉米科学, 2018, 26(4):74-78.
Zhang W X, Wang K R, Xie R Z, Hou P, Ming B, Liu C W, Xiao C H, Zhang G Q, Chen J L, Yang J J, Liu F H, Li S K. Relationship between corn grain broken rate and moisture content as well as the differences among cultivars. J Maize Sci, 2018, 26(4):74-78 (in Chinese with English abstract).
[13] 董朋飞, 郭亚南, 王克如, 谢瑞芝, 明博, 侯鹏, 侯俊峰, 李潮海, 李少昆. 玉米子粒耐破碎性及其评价与测试方法. 玉米科学, 2018, 26(4):116-121.
Dong P F, Guo Y N, Wang K R, Xie R Z, Ming B, Hou P, Hou J F, Li C H, Li S K. Study on the breakage tolerance of corn grain by grinding method. J Maize Sci, 2018, 26(4):116-121 (in Chinese with English abstract).
[14] Hou J F, Zhang Y, Jin X L, Dong P F, Guo X Y, Wang K R, Fan Y H, Li S K. Structural parameters for X-ray micro-computed tomography (μCT) and their relationship with the breakage rate of corn varieties. Plant Methods. 2019, 15:161.
doi: 10.1186/s13007-019-0538-1
[15] Wang Y Z, Li L L, Gao S, Guo Y N, Zhang G Q, Ming B, Xie R Z, Xue J, Hou P, Wang K R, Li S K. Evaluation of grain breakage sensitivity of maize varieties mechanically-harvested by combine harvester. Int J Agric Biol Eng, 2020, 13:8-16.
[16] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018, 51:1890-1898.
Zhang W X, Ming B, Wang K R, Liu CW, Hou P, Chen J L, Zhang G Q, Yang J J, Che S L, Xie R Z, Li S K. Analysis of sowing and harvesting allocation of corn based on cultivar maturity and grain dehydration characteristics. Sci Agric Sin, 2018, 51:1890-1898 (in Chinese with English abstract).
[17] 黄兆福, 明博, 王克如, 谢瑞芝, 杨飞, 王志刚, 肖春华, 李少昆. 辽河流域玉米籽粒脱水特点及适宜收获期分析. 作物学报, 2019, 45:922-931.
Huang Z F, Ming B, Wang K R, Xie R Z, Yang F, Wang Z G, Xiao C H, Li S K. Characteristics of corn grain dehydration and prediction of suitable harvest period in Liao River Basin. Acta Agron Sin, 2019, 45:922-931 (in Chinese with English abstract).
[18] 薛军, 李璐璐, 谢瑞芝, 王克如, 侯鹏, 明博, 张万旭, 张国强, 高尚, 白氏杰, 初振东, 李少昆. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44:1774-1781.
Xue J, Li L L, Xie R Z, Wang K R, Hou P, Ming B, Zhang W X, Zhang G Q, Gao S, Bai S J, Chu Z D, Li S K. Effect of lodging on corn grain losing and harvest efficiency in mechanical grain harvest. Acta Agron Sin, 2018, 44:1774-1781 (in Chinese with English abstract).
[19] 薛军, 王群, 李璐璐, 张万旭, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 玉米生理成熟后倒伏变化及其影响因素. 作物学报, 2018, 44:1782-1792.
Xue J, Wang Q, Li L L, Zhang W X, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Changes of corn lodging after physiological maturity and its influencing factors. Acta Agron Sin, 2018, 44:1782-1792 (in Chinese with English abstract).
[20] Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Evaluation of maize lodging resistance based on the critical wind speed of stalk breaking during the late growth stage. Plant Methods, 2020, 16:148.
doi: 10.1186/s13007-020-00689-z
[21] 王克如, 李璐璐, 郭银巧, 范盼盼, 柴宗文, 侯鹏, 谢瑞芝, 李少昆. 不同机械作业对玉米子粒收获质量的影响. 玉米科学, 2016, 24(1):114-116.
Wang K R, Li L L, Guo Y Q, Fan P P, Chai Z W, Hou P, Xie R Z, Li S K. Effects of different mechanical operation on corn grain harvest quality. J Maize Sci, 2016, 24:114-116 (in Chinese with English abstract).
[22] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50:2036-2043
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of corn mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017, 50:2036-2043 (in Chinese with English abstract).
[23] Shouse S C, Hurburgh C R, Jr. Hanna H M, Petersen D. Farm energy: improving corn drying efficiency. Agric Environ Exten Publ, 2011, 198. http://lib.dr.iastate.edu/extension_ag_pubs/198.
[24] Ali R M. Distribution of Damage in Corn Combine Cylinder and Relationship between Physico-Rheological Properties of Shelled Grain and Damage. PhD Dissertation of Iowa State University, Iowa, America, 1972.
[25] U. S. Grains Council. Corn harvest quality report 2019/2020. 2020. https://grains.org/corn_report/corn-harvest-quality-report-2019-2020/.
[26] Hall G E, Johnson W H. Corn grain crackage induced by mechanical shelling. Trans ASAE, 1970, 13:51-55.
doi: 10.13031/2013.38533
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!