作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2987-2993.doi: 10.3724/SP.J.1006.2022.13068
许洁婷1,2,3(), 刘相国4(), 金敏亮1,2, 潘弘2, 韩宝柱2, 李梦娇2, 岩说5, 胡国庆5, 严建兵1()
XU Jie-Ting1,2,3(), LIU Xiang-Guo4(), JIN Min-Liang1,2, PAN Hong2, HAN Bao-Zhu2, LI Meng-Jiao2, YAN Shuo5, HU Guo-Qing5, YAN Jian-Bing1()
摘要:
玉米遗传转化严重依赖于受体基因型, 目前绝大部分商业化玉米骨干自交系的遗传转化仍然十分困难。Baby boom (Bbm)和Wuschel2 (Wus2)是植物干细胞发育中的2个关键基因, 调节这2个基因的时空表达可以有效提高植物遗传转化效率。本研究以多个我国玉米骨干自交系为受体材料开展转化效率测试, 发现虽然Bbm和Wus2的超表达可以显著提高转化效率, 但对玉米的生长发育具有不利影响。本研究开发了一种新型辅助转化技术, 在辅助载体中加入致死基因表达元件, 并调节2个基因的时空表达。结果表明该辅助载体和目标载体混合转化时, 不但可以在T0代成功获得不含Bbm和Wus2辅助载体的正常生长发育的优质转化苗, 还显著提高转化效率(平均达19.5%)。本研究成功建立和完善了一套不依赖基因型的高效玉米遗传转化体系, 为提高生物育种效率和精准改良提供了有力支持。
[1] | 石清琢, 姜敏. 玉米转基因育种技术概述. 杂粮作物, 2005, 25: 230-231. |
Shi Q Z, Jiang M. Review on selection techniques for maize transgenic. Rain Fed Crops, 2005, 25: 230-231. (in Chinese) | |
[2] | 张英, 穆楠, 朴红梅. 转基因技术在玉米遗传育种中的应用. 生物技术通报, 2009, 25(1): 64-68. |
Zhang Y, Mu N, Piao H M. Applications of transgenic technology in maize genetic breeding. Biotechnol Bull, 2009, 25(1): 64-68. (in Chinese with English abstract) | |
[3] |
焦悦, 韩宇, 杨桥, 黄耀辉, 安吉翠, 杨亚洲, 叶纪明. 全球转基因玉米商业化发展态势概述及启示. 生物技术通报, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
Jiao Y, Han Y, Yang Q, Huang Y H, An J C, Yang Y Z, Ye J M. Commercialization development trend of genetically modified maize and the enlightenment. Biotechnol Bull, 2021, 37(4): 164-176. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803 |
|
[4] |
Fromm M E, Taylor L P, Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature, 1986, 319: 791-793.
doi: 10.1038/319791a0 |
[5] |
Rhodes C A, Pierce D A, Mettler I J, Mascarenhas D, Detmer J J. Genetically transformed maize plants from protoplasts. Science, 1988, 240: 204-247.
pmid: 2832947 |
[6] |
Shillito R D, Carswell G K, Johnson C M, DiMaio J J, Harms C T. Regeneration of fertile plants from protoplasts of elite inbred maize. Nat Biotechnol, 1989, 7: 581-587.
doi: 10.1038/nbt0689-581 |
[7] |
Klein T M, Kornstein L, Sanford J C, Fromm M E. Genetic transformation of maize cells by particle bombardment. Plant Physiol, 1989, 91: 440-444.
doi: 10.1104/pp.91.1.440 pmid: 16667039 |
[8] |
Gould J, Devey M, Hasegawa O, Ulian E C, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol, 1991, 95: 426-434.
doi: 10.1104/pp.95.2.426 pmid: 16668001 |
[9] |
Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA, 1986, 83: 715-719.
doi: 10.1073/pnas.83.3.715 |
[10] |
Golovkin M V, Abraham M, Morocz S, Bottka S, Feher A, Dudits D. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci, 1993, 90: 41-52.
doi: 10.1016/0168-9452(93)90154-R |
[11] |
Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V, Chambers S A, Adams Jr W R, Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 1990, 2: 603-618.
doi: 10.2307/3869124 |
[12] |
Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996, 14: 745-750.
pmid: 9630983 |
[13] | 黄敏, 杜何为, 张祖新. 玉米转基因技术研究进展. 安徽农业科学, 2004, 32: 1017-1020. |
Huang M, Du H W, Zhang Z X. Transformation research progress in maize. J Anhui Agric Sci, 2004, 32: 1017-1020. (in Chinese with English abstract) | |
[14] | 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望. 玉米科学, 2018, 26(2): 1-15. |
Li Y, Wang T Y. Germplasm enhancement in maize: advances and prospects. J Maize Sci, 2018, 26(2): 1-15. (in Chinese with English abstract) | |
[15] |
Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207-214.
doi: 10.1007/BF00396083 pmid: 24249562 |
[16] |
Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737-1749.
pmid: 12172019 |
[17] |
Zuo J, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x |
[18] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamma W. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015.
doi: 10.1105/tpc.16.00124 |
[19] |
Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep, 2017, 36: 1477-1491.
doi: 10.1007/s00299-017-2169-1 |
[20] |
Lowe K, La Rota M L, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant, 2018, 54: 240-252.
doi: 10.1007/s11627-018-9905-2 |
[21] |
Liu H, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie A R, Yan J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell, 2020, 32: 1397-1413.
doi: 10.1105/tpc.19.00934 |
[22] |
Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol Biol, 2009, 526: 47-58.
doi: 10.1007/978-1-59745-494-0_4 pmid: 19378003 |
[23] |
Hartley R W. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci, 1989, 14: 450-454.
pmid: 2696173 |
[24] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783 |
[25] |
Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937 |
[26] |
Graaff E, Laux L, Rensing S A. The WUS homeobox-containing (WOX) protein family. Genome Biol, 2009, 10: 248.
doi: 10.1186/gb-2009-10-12-248 pmid: 20067590 |
[27] |
Weigel D, Jürgens G. Stem cells that make stems. Nature, 2002, 415: 751-754.
doi: 10.1038/415751a |
[1] | 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23. |
[2] | 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261. |
[3] | 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199. |
[4] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[5] | 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176. |
[6] | 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167. |
[7] | 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376. |
[8] | 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883. |
[9] | 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006. |
[10] | 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124. |
[11] | 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850. |
[12] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[13] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[14] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[15] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
|