欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2987-2993.doi: 10.3724/SP.J.1006.2022.13068

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不依赖基因型的高效玉米遗传转化体系的建立

许洁婷1,2,3(), 刘相国4(), 金敏亮1,2, 潘弘2, 韩宝柱2, 李梦娇2, 岩说5, 胡国庆5, 严建兵1()   

  1. 1华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
    2未米生物科技(江苏)有限公司, 江苏常州 213000
    3未米生物科技(海南)有限公司, 海南三亚 572000
    4吉林省农业科学院农业生物技术研究所, 吉林长春 130033
    5西双版纳傣族自治州农业科学研究所, 云南景洪 666100
  • 收稿日期:2021-11-26 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-20
  • 通讯作者: 严建兵
  • 作者简介:许洁婷, E-mail: xjt@wimibio.com;
    刘相国, E-mail: lxgyyj@cjaas.com第一联系人:

    **同等贡献

  • 基金资助:
    国家转基因生物新品种培育重大专项(2018ZX08010-04B);国家转基因生物新品种培育重大专项(2019ZX08010003-002-013);吉林省科技发展计划项目(20190201290JC)

Establishment of genotype-independent high-efficiency transformation system in maize

XU Jie-Ting1,2,3(), LIU Xiang-Guo4(), JIN Min-Liang1,2, PAN Hong2, HAN Bao-Zhu2, LI Meng-Jiao2, YAN Shuo5, HU Guo-Qing5, YAN Jian-Bing1()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2WIMI Biotechnology Co., Ltd., Changzhou 213000, Jiangsu, China
    3WIMI Biotechnology Co., Ltd., Sanya 572000, Hainan, China
    4Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
    5Institute of Agricultural Sciences of Xishuangbanna Prefecture of Yunnan Province, Jinghong 666100, Yunnan, China
  • Received:2021-11-26 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-20
  • Contact: YAN Jian-Bing
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Major Project for Developing New GM Crops(2018ZX08010-04B);National Major Project for Developing New GM Crops(2019ZX08010003-002-013);Science and Technology Innovation Program of Jilin Province(20190201290JC)

摘要:

玉米遗传转化严重依赖于受体基因型, 目前绝大部分商业化玉米骨干自交系的遗传转化仍然十分困难。Baby boom (Bbm)和Wuschel2 (Wus2)是植物干细胞发育中的2个关键基因, 调节这2个基因的时空表达可以有效提高植物遗传转化效率。本研究以多个我国玉米骨干自交系为受体材料开展转化效率测试, 发现虽然BbmWus2的超表达可以显著提高转化效率, 但对玉米的生长发育具有不利影响。本研究开发了一种新型辅助转化技术, 在辅助载体中加入致死基因表达元件, 并调节2个基因的时空表达。结果表明该辅助载体和目标载体混合转化时, 不但可以在T0代成功获得不含BbmWus2辅助载体的正常生长发育的优质转化苗, 还显著提高转化效率(平均达19.5%)。本研究成功建立和完善了一套不依赖基因型的高效玉米遗传转化体系, 为提高生物育种效率和精准改良提供了有力支持。

关键词: 玉米, 遗传转化, Baby boom, Wuschel2, 辅助载体

Abstract:

The reliance on receptor genotype of genetic transformation made it difficult for the transformation of commercial maize lines. Expression regulation of two important genes in plant stem cell development, Baby boom (Bbm) and Wuschel2 (Wus2), was revealed to significantly improve transformation efficiency. Several Chinese core maize inbred lines were used as receptor materials to test the transformation efficiency. Although the overexpression of Bbm and Wus2 could significantly improve the transformation efficiency, it had a negative impact on the growth and development of T0 plants. Here, a new assisted transformation technology was developed, in which a lethal gene element was added to the assist vector and the spatial expression of the two genes were regulated. The results revealed that the hybrid transformation of the assist vector and the target vector could not only successfully obtain high-quality transformation seedlings without Bbm and Wus2 assist vector in T0 generation, but also significantly improve the transformation efficiency with an average 19.5%. The application of this improved genotype-independent genetic transformation system promises maize precise improvement with higher efficiency.

Key words: maize, genetic transformation, Baby boom, Wuschel2, assist vector

图1

辅助载体和基因敲除载体示意图"

图2

郑58的愈伤诱导(A~C)、愈伤分化(D)和IL3 T0植株异常表型(E) 红色箭头所示为异常的雄穗。"

表1

玉米骨干自交系和常规受体材料中pWMDR001和p193412载体的转化效率"

试验编号
Test ID
玉米自交系
Maize inbred line
载体
Vector name
起始胚数量
No. of embryos
转化阳性苗数量
No. of positive transgenic seedlings
转化效率
Transformation frequency (%)
1 郑58 Zheng 58 pWMDR001 100 24 24.0
2 X923-1 pWMDR001 50 3 6.0
3 IL3 pWMDR001 50 5 10.0
4 IL4 pWMDR001 50 9 18.0
5 京724 Jing 724 pWMDR001 50 6 12.0
6 KN5585 pWMDR001 50 9 18.0
7 B104 pWMDR001 100 18 18.0
8 郑58 Zheng 58 p193412 200 0 0
9 X923-1 p193412 100 0 0
10 IL3 p193412 100 0 0
11 IL4 p193412 100 0 0
12 京724 Jing 724 p193412 100 0 0
13 KN5585 p193412 200 21 10.5
14 B104 p193412 100 5 5.0

图3

混合转化后的基因型分离检测(A, B)和Waxy基因编辑情况(C) M: DL2000 marker; P: 阳性对照; N: 阴性对照。"

表2

3种玉米材料中pWMDR002和基因编辑载体混转的转化效率"

试验编号
Test ID
玉米自交系
Maize
inbred line
起始胚数量
No. of
embryos
转化阳性苗数量
No. of positive
transgenic seedlings
优质转化苗数量
No. of high-quality transformed
seedlings
优质转化苗分离率
Separation rate of high-quality transformed seedling (%)
优质转化效率
High-quality
transformation
frequency (%)
1 郑58 Zheng 58 313 24 8 33.3 2.6
2 郑58 Zheng 58 535 107 2 1.9 0.4
3 郑58 Zheng 58 828 129 56 43.4 6.8
4 郑58 Zheng 58 446 103 14 13.6 3.1
5 KN5585 210 40 5 12.5 2.4
6 KN5585 256 65 18 27.7 7.0
7 KN5585 260 51 16 31.4 6.2
8 B104 189 59 13 22.0 6.9
9 B104 242 70 11 15.7 4.5
10 B104 150 48 10 20.8 6.7

表3

4个玉米自交系中pWMDR003和基因编辑载体混合转化的转化效率"

试验编号
Test ID
玉米自交系
Maize inbred
line
起始胚数量
No. of
embryos
转化阳性苗数量
No. of positive transgenic
seedlings
优质转化苗数量
No. of high-quality transformed seedlings
优质转化苗分离率
Separation rate of high-quality
transformed
seedling (%)
优质转化效率
High-quality transformation frequency (%)
平均优质转化效率
Average high-quality
transformation frequency (%)
1 B104 430 133 123 92.5 28.6 31.0
2 B104 100 39 39 100.0 39.0
3 B104 150 45 38 84.4 25.3
4 郑58
Zheng 58
160 18 14 77.8 8.8 16.4
5 郑58
Zheng 58
200 56 48 85.7 24.0
6 京724
Jing 724
50 6 5 83.3 10.0 11.5
7 京724
Jing 724
100 15 13 86.7 13.0
8 糯IN12
Nuo IN12
50 7 7 100.0 14.0 13.3
9 糯IN12
Nuo IN12
200 27 25 92.6 12.5
[1] 石清琢, 姜敏. 玉米转基因育种技术概述. 杂粮作物, 2005, 25: 230-231.
Shi Q Z, Jiang M. Review on selection techniques for maize transgenic. Rain Fed Crops, 2005, 25: 230-231. (in Chinese)
[2] 张英, 穆楠, 朴红梅. 转基因技术在玉米遗传育种中的应用. 生物技术通报, 2009, 25(1): 64-68.
Zhang Y, Mu N, Piao H M. Applications of transgenic technology in maize genetic breeding. Biotechnol Bull, 2009, 25(1): 64-68. (in Chinese with English abstract)
[3] 焦悦, 韩宇, 杨桥, 黄耀辉, 安吉翠, 杨亚洲, 叶纪明. 全球转基因玉米商业化发展态势概述及启示. 生物技术通报, 2021, 37(4): 164-176.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803
Jiao Y, Han Y, Yang Q, Huang Y H, An J C, Yang Y Z, Ye J M. Commercialization development trend of genetically modified maize and the enlightenment. Biotechnol Bull, 2021, 37(4): 164-176. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0803
[4] Fromm M E, Taylor L P, Walbot V. Stable transformation of maize after gene transfer by electroporation. Nature, 1986, 319: 791-793.
doi: 10.1038/319791a0
[5] Rhodes C A, Pierce D A, Mettler I J, Mascarenhas D, Detmer J J. Genetically transformed maize plants from protoplasts. Science, 1988, 240: 204-247.
pmid: 2832947
[6] Shillito R D, Carswell G K, Johnson C M, DiMaio J J, Harms C T. Regeneration of fertile plants from protoplasts of elite inbred maize. Nat Biotechnol, 1989, 7: 581-587.
doi: 10.1038/nbt0689-581
[7] Klein T M, Kornstein L, Sanford J C, Fromm M E. Genetic transformation of maize cells by particle bombardment. Plant Physiol, 1989, 91: 440-444.
doi: 10.1104/pp.91.1.440 pmid: 16667039
[8] Gould J, Devey M, Hasegawa O, Ulian E C, Peterson G, Smith R H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol, 1991, 95: 426-434.
doi: 10.1104/pp.95.2.426 pmid: 16668001
[9] Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA, 1986, 83: 715-719.
doi: 10.1073/pnas.83.3.715
[10] Golovkin M V, Abraham M, Morocz S, Bottka S, Feher A, Dudits D. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci, 1993, 90: 41-52.
doi: 10.1016/0168-9452(93)90154-R
[11] Gordon-Kamm W J, Spencer T M, Mangano M L, Adams T R, Daines R J, Start W G, O'Brien J V, Chambers S A, Adams Jr W R, Willetts N G, Rice T B, Mackey C J, Krueger R W, Kausch A P, Lemaux P G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell, 1990, 2: 603-618.
doi: 10.2307/3869124
[12] Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol, 1996, 14: 745-750.
pmid: 9630983
[13] 黄敏, 杜何为, 张祖新. 玉米转基因技术研究进展. 安徽农业科学, 2004, 32: 1017-1020.
Huang M, Du H W, Zhang Z X. Transformation research progress in maize. J Anhui Agric Sci, 2004, 32: 1017-1020. (in Chinese with English abstract)
[14] 黎裕, 王天宇. 玉米转基因技术研发与应用现状及展望. 玉米科学, 2018, 26(2): 1-15.
Li Y, Wang T Y. Germplasm enhancement in maize: advances and prospects. J Maize Sci, 2018, 26(2): 1-15. (in Chinese with English abstract)
[15] Armstrong C L, Green C E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta, 1985, 164: 207-214.
doi: 10.1007/BF00396083 pmid: 24249562
[16] Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell, 2002, 14: 1737-1749.
pmid: 12172019
[17] Zuo J, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[18] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamma W. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015.
doi: 10.1105/tpc.16.00124
[19] Mookkan M, Nelson-Vasilchik K, Hague J, Zhang Z J, Kausch A P. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep, 2017, 36: 1477-1491.
doi: 10.1007/s00299-017-2169-1
[20] Lowe K, La Rota M L, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant, 2018, 54: 240-252.
doi: 10.1007/s11627-018-9905-2
[21] Liu H, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yang X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie A R, Yan J. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell, 2020, 32: 1397-1413.
doi: 10.1105/tpc.19.00934
[22] Sidorov V, Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods Mol Biol, 2009, 526: 47-58.
doi: 10.1007/978-1-59745-494-0_4 pmid: 19378003
[23] Hartley R W. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci, 1989, 14: 450-454.
pmid: 2696173
[24] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783
[25] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[26] Graaff E, Laux L, Rensing S A. The WUS homeobox-containing (WOX) protein family. Genome Biol, 2009, 10: 248.
doi: 10.1186/gb-2009-10-12-248 pmid: 20067590
[27] Weigel D, Jürgens G. Stem cells that make stems. Nature, 2002, 415: 751-754.
doi: 10.1038/415751a
[1] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[2] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[3] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[4] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[5] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[6] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[7] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[8] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[9] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[10] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[11] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[12] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[13] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[14] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[15] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .