欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2614-2624.doi: 10.3724/SP.J.1006.2024.32057

• 耕作栽培·生理生化 • 上一篇    下一篇

基于DSSAT模型模拟气候变化对江西双季稻生长期和产量的影响

张方亮1(), 刘文英2, 田俊1, 汪建军2, 刘丹1, 杨军1, 李迎春1, 章毅之1,*()   

  1. 1江西省气象科学研究所, 江西南昌 330096
    2江西省农业气象中心, 江西南昌 330096
  • 收稿日期:2024-04-15 接受日期:2024-06-20 出版日期:2024-10-12 网络出版日期:2024-07-10
  • 通讯作者: *章毅之, E-mail: yizhi-zhang@qq.com
  • 作者简介:E-mail: zflqixiang@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD2300203);国家自然科学基金项目(41965008);中国气象局“气候生态产品价值实现研究”青年创新团队项目(CMA2024QN15);江西省气象局面上项目(JX2022M10)

Simulating effects of climate change on growth season and yield of double cropping rice in Jiangxi province based on DSSAT model

ZHANG Fang-Liang1(), LIU Wen-Ying2, TIAN Jun1, WANG Jian-Jun2, LIU Dan1, YANG Jun1, LI Ying-Chun1, ZHANG Yi-Zhi1,*()   

  1. 1Meteorological Science Research Institute of Jiangxi Province, Nanchang 330096, Jiangxi, China
    2Jiangxi Agricultural Meteorology Center, Nanchang 330096, Jiangxi, China
  • Received:2024-04-15 Accepted:2024-06-20 Published:2024-10-12 Published online:2024-07-10
  • Contact: *E-mail: yizhi-zhang@qq.com
  • Supported by:
    National Key Research and Development Program of China(2022YFD2300203);National Natural Science Foundation of China(41965008);China Meteorological Administration “Research on Value realization of climate ecological products” Youth Innovation Team Project(CMA2024QN15);Jiangxi Meteorological Bureau General Project(JX2022M10)

摘要:

江西是中国双季稻的主要种植地区。气候变化严重影响了双季稻生产。基于江西省1981—2022年逐日气象资料和双季稻作物资料, 对DSSAT模型进行调参验证; 利用验证后的DSSAT模型, 分析江西省双季稻生长期和产量空间分布和时间变化趋势; 采用t检验方法, 明确气候变化对江西早稻和晚稻的影响差异。结果表明: (1) 江西早稻(晚稻)播种期至开花期天数、播种期至成熟期天数和产量模拟值与观测值的归一化均方根误差分别为1.87% (1.86%)、2.05% (2.36%)和6.05% (7.30%), D指标分别为0.97 (0.98)、0.96 (0.96)和0.95 (0.94); (2) 固定播期和品种条件下, 1981— 2022年江西早稻和晚稻生长期均呈显著缩短趋势, 平均每10年分别减少2.22 d和1.61 d; 研究期间江西早稻和晚稻潜在产量均呈显著下降趋势, 平均每10年分别减少181.30 kg hm-2和276.16 kg hm-2; (3) t检验表明, 江西早稻生长期气候倾向率极显著地小于晚稻, 而江西早稻潜在产量气候倾向率极显著地大于晚稻。DSSAT模型可较好的模拟江西双季稻生长发育和产量。气候变化对江西早稻生长期和晚稻潜在产量影响更加明显。本研究为江西双季稻作物模型研究、产量预报和气候变化评估提供了科学依据。

关键词: DSSAT, 早稻, 晚稻, 生长期, 水稻潜在产量

Abstract:

Jiangxi province is a key region for double cropping rice cultivation in China. Climate change has significantly impacted double cropping rice production in this area. This study validates the DSSAT model using daily meteorological data and crop data for double cropping rice in Jiangxi Province from 1981 to 2022. The validated DSSAT model is then used to analyze the spatial distribution and temporal variation trends of the growth season and yield of double cropping rice in Jiangxi province. Additionally, the t-test method is employed to identify differences in the effects of climate change on early rice and late rice in the province. The results are as follows: (1) The normalized root mean square error (NRMSE) between simulated and observed values for the sowing-to-flowering duration, sowing-to-maturity duration, and yield of early rice (late rice) in Jiangxi province are 1.87% (1.86%), 2.05% (2.36%), and 6.05% (7.30%), respectively. The D-index for these parameters are 0.97 (0.98), 0.96 (0.96), and 0.95 (0.94), respectively. (2) With fixed sowing dates and varieties, the growth seasons for early rice and late rice in Jiangxi province significantly shortened from 1981 to 2022, with an average decrease of 2.22 and 1.61 days per decade, respectively. The potential yields of early rice and late rice also significantly decreased over the same period, with an average reduction of 181.30 kg hm-2 and 276.16 kg hm-2 per decade, respectively. (3) The t-test results indicate that the climate trend for the growth season of early rice in Jiangxi Province is significantly lower than that of late rice. Conversely, the climate trend for the potential yield of early rice is significantly higher than that of late rice. The DSSAT model effectively simulates the growth and yield of double cropping rice in Jiangxi province. The findings highlight that climate change has more pronounced effects on the growth season of early rice and the potential yield of late rice in Jiangxi province. This study provides a scientific basis for crop model research, yield prediction, and climate change assessment for double cropping rice in Jiangxi province.

Key words: DSSAT, early rice, late rice, growth season, rice potential yield

图1

气象站和水稻农业气象观测站空间分布 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为赣S (2023) 24号的标准地图制作, 底图边界无修改。"

表1

DSSAT模型水稻品种参数[25]"

参数Parameter 描述Description 范围Range 单位Unit
P1 完成基本营养期需要的≥9℃积温
Accumulated temperature ≥9℃ required for the basic vegetative period
150-800 ℃ d
P2O 发育最快时的临界光周期
Critical photoperiod at which the development occurs at a maximum rate
11-13 h
P2R 日长每大于临界光周期1 h导致穗粒发育延迟的程度
Panicle initiation development is delayed for each hour increase in photoperiod above P2O
5-300 ℃ d
P5 从籽粒开始灌浆到成熟时需要的≥9℃积温
Accumulated temperature ≥9℃ required from beginning of grain filling to maturity
150-850 ℃ d
PHINT 相邻叶尖出现间隔所需的积温
Accumulated temperature required for each leaf-tip to appear
55-90 ℃ d
G1 潜在的小穗系数
Potential spikelet number coefficient
50-75
G2 潜在的单粒重
Potential single grain weight
0.015-0.030 g
G3 相对分蘖系数
Relative tillering coefficient
0.7-1.3
THOT 小穗不育的临界高温
Critical high temperature of spikelet sterility
25-34
TCLDP 穗粒延迟发育的临界低温
Critical low temperature for delayed panicle initiation development
12-18
TCLDF 小穗不育的临界低温
Critical low temperature of spikelet sterility
10-20

表2

农业气象观测站早稻和晚稻的品种和年份"

站点
Station
早稻 Early rice 晚稻 Late rice
品种 Variety 年份 Year 品种 Variety 年份 Year
广丰Guangfeng 浙稻Zhedao 2002-2004, 2010 江优10号Jiangyou 10 1991-1992
湖口Hukou 早稻7307 Zaodao 7307 1991-1995 籼优64 Xianyou 64 1991, 1993-1996, 1998
吉安Ji’an 金优463 Jinyou 463 2010-2012
莲花Lianhua 浙福504 Zhefu 504 1998-1999 丰优丝苗Fengyousimiao 2007-2010
南昌Nanchang 禾盛10号Hesheng 10 2006, 2008-2009 926 2007, 2009, 2011-2012
宁都Ningdu 金优402 Jinyou 402 2000, 2005, 2008
南丰Nanfeng 4015 1992-2004
南康Nankang 754 1983-1984, 1986-1987
瑞昌Ruichang 早稻7307 Zaodao 7307 1986-1990, 1994-1997 威优63 Weiyou 63 1990-1991
泰和Taihe 果稻705 Guodao 705 1983, 1985 汕259 Shan 259 1984-1985
婺源Wuyuan 金优213 Jinyou 213 2008-2009 754 1984-1985
宜丰Yifeng 岳优9113 Yueyou 9113 2009-2013
余干Yugan 汕优64 Shanyou 64 1993-2001
樟树Zhangshu 优I402 You I402 2006-2008

图2

江西早稻生育期和产量模拟值与观测值比较"

表3

江西早稻DSSAT模型品种参数"

站点Station P1 P2R P5 P2O G1 G2 G3 THOT
广丰Guangfeng 360 15 290 11.6 75 0.03 0.8 28
湖口Hukou 270 65 185 13.0 62 0.03 0.8 28
莲花Lianhua 150 75 270 11.3 75 0.03 0.9 28
南昌Nanchang 150 75 245 11.1 75 0.03 0.8 28
宁都Ningdu 150 95 355 11.3 72 0.03 0.7 30
瑞昌Ruichang 350 5 315 12.8 73 0.03 1.0 28
泰和Taihe 180 215 280 13.0 74 0.03 0.7 28
婺源Wuyuan 150 85 335 11.1 51 0.03 0.7 32

图3

江西晚稻生育期和产量模拟值与观测值比较"

表4

江西晚稻DSSAT模型品种参数"

站点Station P1 P2R P5 P2O G1 G2 G3 THOT
广丰Guangfeng 710 15 345 12.5 73 0.03 0.7 28
湖口Hukou 150 255 220 12.6 75 0.03 1.0 28
吉安Ji’an 150 95 520 11.2 71 0.03 0.7 28
莲花Lianhua 150 165 340 11.0 75 0.03 1.0 28
南昌Nanchang 420 75 360 11.0 75 0.03 0.7 28
南丰Nanfeng 470 295 340 13.0 68 0.03 1.0 28
南康Nankang 150 295 340 12.1 50 0.03 1.3 28
瑞昌Ruichang 150 225 235 11.4 75 0.03 0.9 28
泰和Taihe 150 205 345 11.1 75 0.03 0.7 28
婺源Wuyuan 160 265 260 11.8 51 0.03 1.3 28
宜丰Yifeng 250 298 335 13.0 74 0.03 0.7 28
余干Yugan 230 285 455 12.9 75 0.03 1.3 28
樟树Zhangshu 160 195 470 11.9 75 0.03 0.7 28

图4

1981-2022年江西早稻和晚稻模拟生长期及其气候倾向率的空间分布 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为赣S (2023) 24号的标准地图制作, 底图边界无修改。a1、a2、b1和b2分别表示早稻生长期、早稻生长期气候倾向率、晚稻生长期和晚稻生长期气候倾向率。"

图5

1981-2022年江西早稻和晚稻模拟潜在产量及其气候倾向率的空间分布 该图基于国家测绘地理信息局标准地图服务网站下载的审图号为赣S (2023) 24号的标准地图制作, 底图边界无修改。a1、a2、b1和b2分别表示早稻潜在产量、早稻潜在产量气候倾向率、晚稻潜在产量和晚稻潜在产量气候倾向率。"

[1] 罗霄, 李忠武, 叶芳毅, 黄金权. 水稻生长模型CERES-Rice的研究进展及展望. 中国农业科技导报, 2009, 11(5): 54-59.
Luo X, Li Z W, Ye F Y, Huang J Q. Progress and prospects of studies on CERES-Rice models. J Agric Sci Technol, 2009, 11(5): 54-59 (in Chinese with English abstract).
[2] Xiong W, Holman I, Conway D, Lin E D, Li Y. A crop model cross calibration for use in regional climate impacts studies. Ecol Model, 2008, 213: 365-380.
[3] 姚凤梅, 许吟隆, 冯强, 林而达, 延晓冬. CERES-Rice模型在中国主要水稻生态区的模拟及其检验. 作物学报, 2005, 31: 545-550.
Yao F M, Xu Y L, Feng Q, Lin E D, Yan X D. Simulation and validation of CERES-Rice model in main rice ecological zones in China. Acta Agron Sin, 2005, 31: 545-550 (in Chinese with English abstract).
[4] 熊伟. 站点CERES-Rice模型区域应用效果和误差来源. 生态学报, 2009, 29: 2003-2009.
Xiong W. The performance of regional simulation of CERES- Rice model and its uncertainties. Acta Ecol Sin, 2009, 29: 2003-2009 (in Chinese with English abstract).
[5] 胡家敏, 林忠辉, 向红琼, 徐永灵, 古书鸿. 基于CERES-Rice模型分析黔中高原水稻生产对气候变化的响应. 中国农业气象, 2011, 32(增刊1): 88-92.
Hu J M, Lin Z H, Xiang H Q, Xu Y L, Gu S H. Evaluation of the effects of climate change during the past 44 years on rice production in Guizhou plateau with CERES-Rice model. Chin J Agrometeorol, 2011, 32(S1): 88-92 (in Chinese with English abstract).
[6] 曹秀霞, 安开忠, 蔡伟, 苏荣瑞, 姚凤梅. CERES-Rice模型在江汉平原的验证与适应性评价. 中国农业气象, 2013, 34: 447-454.
doi: 10.3969/j.issn.1000-6362.2013.04.011
Cao X X, An K Z, Cai W, Su R R, Yao F M. Validation and adaptability evaluation of CERES-Rice model in the Jianghan plain. Chin J Agrometeorol, 2013, 34: 447-454 (in Chinese with English abstract).
[7] 赖晨曦, 王莹, 张刘东, 王龙. 基于DSSAT模型不同灌水模式滇中水稻生长模拟. 江西农业学报, 2020, 32(5): 116-119.
Lai C X, Wang Y, Zhang L D, Wang L. Simulation of rice growth in central Yunnan in different watering patterns based on DSSAT model. Acta Agric Jiangxi, 2020, 32(5): 116-119 (in Chinese with English abstract).
[8] Zhang T Y, Huang Y, Yang X G. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice. Global Chang Biol, 2013, 19: 563-570.
[9] Zhang L L, Zhang Z, Zhang J, Luo Y C, Tao F L. Response of rice phenology to climate warming weakened across China during 1981-2018: did climatic or anthropogenic factors play a role? Environ Res Lett, 2022, 17: 064029.
[10] Zhang S, Tao F L. Modeling the response of rice phenology to climate change and variability in different climatic zones: comparisons of five models. Eur J Agron, 2013, 45: 165-176.
[11] Nguyen-Sy T, Cheng W G, Tawaraya K, Sugawara K, Kobayashi K. Impacts of climatic and varietal changes on phenology and yield components in rice production in Shonai region of Yamagata Prefecture, Northeast Japan for 36 years. Plant Prod Sci, 2019, 22: 382-394.
doi: 10.1080/1343943X.2019.1571421
[12] Yoon P R, Choi J Y. Effects of shift in growing season due to climate change on rice yield and crop water requirements. Paddy Water Environ, 2020, 18: 291-307.
[13] Cai C Z, Yang H Y, Zhang L, Cao W F. Potential yield of world rice under global warming based on the ARIMA-TR model. Atmosphere, 2022, 13: 1336.
[14] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971-9975.
doi: 10.1073/pnas.0403720101 pmid: 15226500
[15] Zhang L J, Wang J X, Sun T H, Wang X L. Impacts of climate change on the mean and variance of indica and japonica rice yield in China. Agronomy, 2022, 12: 3062.
[16] 熊伟, 陶福禄, 许吟隆, 林而达. 气候变化情景下我国水稻产量变化模拟. 中国农业气象, 2001, 22(3): 1-5.
Xiong W, Tao F L, Xu Y L, Lin E D. Simulation of rice yield under climatic changes in future in China. Chin J Agrometeorol, 2001, 22(3): 1-5 (in Chinese with English abstract).
[17] Nasir I R, Rasul F, Ahmad A, Asghar H N, Hoogenboom G. Climate change impacts and adaptations for fine, coarse, and hybrid rice using CERES-Rice. Environ Sci Pollut Res Int, 2020, 27: 9454-9464.
[18] Babel M, Agarwal A, Swain D, Herath S. Evaluation of climate change impacts and adaptation measures for rice cultivation in northeast Thailand. Clim Res, 2011, 46: 137-146.
[19] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2022. pp 255-288.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2022. pp 255-288 (in Chinese).
[20] 江西省统计局. 江西省统计年鉴. 北京: 中国统计出版社, 2022. pp 255-288.
Jiangxi Provincial Bureau of Statistics. Jiangxi Provincial Statistical Yearbook. Beijing: China Statistics Press, 2022. pp 255-288 (in Chinese).
[21] Allen R G, Pereira L S, Raes D, Smith M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization of the United Nations, 1998. pp 50-64.
[22] Hoogenboom G, Wilkens P W, Tsuji G Y. DSSAT v3, Volume 1. Honolulu, Hawaii: University of Hawaii, 1999. pp 1-15.
[23] Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsman A J, Ritchie J T. The DSSAT cropping system model. Eur J Agron, 2003, 18: 235-265.
[24] Jones J W, Hoogenboom G, Wilkens P W, Porter C H, Tsuji G Y. Decision Support System for Agrotechnology Transfer Version 4.0. Volume 4. dssat v4.5: Crop Model Documentation. Honolulu: University of Hawaii, 2010. pp 1-9.
[25] Hoogenboom G, Porter C H, Shelia V, Boote K J, Singh U. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.8.2. Gainesville, Florida, USA: DSSAT Foundation, 2024. pp 55-77.
[26] Yang J M, Yang J Y, Liu S, Hoogenboom G. An evaluation of the statistical methods for testing the performance of crop models with observed data. Agric Syst, 2014, 127: 81-89.
[27] 郭尔静, 杨晓光, 王晓煜, 张天一, 黄晚华, 刘子琪, Tao L. 湖南省双季稻产量差时空分布特征. 中国农业科学, 2017, 50: 399-412.
doi: 10.3864/j.issn.0578-1752.2017.02.018
Guo E J, Yang X G, Wang X Y, Zhang T Y, Huang W H, Liu Z Q, Tao L. Spatial-temporal distribution of double cropping rice’s yield gap in Hunan province. Sci Agric Sin, 2017, 50: 399-412 (in Chinese with English abstract).
[28] Evans L T, Fischer R A. Yield potential: its definition, measurement, and significance. Crop Sci, 1999, 39: 1544-1551.
[29] 魏凤英. 现代气候统计诊断与预测技术, 第2版. 北京: 气象出版社, 2007. pp 42-59.
Wei F Y. Modern Climate Statistical Diagnosis and Prediction Technology, 2nd edn. Beijing: China Meteorological Press, 2007. pp 42-59 (in Chinese).
[30] 穆宝胜, 刘欣, 朱文艳. 基于N个标准差法和箱线图法识别变形监测中异常值的应用探究. 南通职业大学学报, 2023, 37(2): 100-104.
Mu B S, Liu X, Zhu W Y. Application of processing abnormal values in deformation monitoring based on N-standard-deviation method and boxplot method. J Nantong Vocat Univ, 2023, 37(2): 100-104 (in Chinese with English abstract).
[31] 赵超. 降雨异常值探测的改造箱形图法. 中国农村水利水电, 2012, (9): 60-62.
Zhao C. An adjusted boxplot for rainfall observations. China Rural Water Hydropower, 2012, (9): 60-62 (in Chinese with English abstract).
[32] Timsina J, Humphreys E. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: a review. Agric Syst, 2006, 90: 5-31.
[33] IPCC. Climate change 2021: the Physical Science Basis. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2021. pp 1-40.
[34] 凌霄霞, 张作林, 翟景秋, 叶树春, 黄见良. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45: 323-334.
doi: 10.3724/SP.J.1006.2019.82044
Ling X X, Zhang Z L, Zhai J Q, Ye S C, Huang J L. A review for impacts of climate change on rice production in China. Acta Agron Sin, 2019, 45: 323-334 (in Chinese with English abstract).
[35] 王学林, 曾凯, 柳军, 谢金花, 张玉龙, 邓斌. 长江中下游地区双季稻生长季内热量资源的变化特征及温度适宜度分析. 西北农林科技大学学报(自然科学版), 2021, 49(3): 27-37.
Wang X L, Zeng K, Liu J, Xie J H, Zhang Y L, Deng B. Variation characteristics of heat resources and temperature suitability for double cropping rice growing seasons in the middle and lower reaches of Yangtze river. J Northwest A&F Univ (Nat Sci Edn), 2021, 49(3): 27-37 (in Chinese with English abstract).
[36] Liu L L, Wang E L, Zhu Y, Tang L, Cao W X. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agric Ecosyst Environ, 2013, 165: 28-38.
[37] Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F, Piao S L. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991-2012. Agric Forest Meteorol, 2017, 233: 1-11.
[38] Ye T, Zong S, Kleidon A, Yuan W P, Wang Y, Shi P J. Impacts of climate warming, cultivar shifts, and phenological dates on rice growth period length in China after correction for seasonal shift effects. Clim Change, 2019, 155: 127-143.
[39] Lyu Z F, Zhu Y, Liu X J, Ye H B, Tian Y C, Li F F. Climate change impacts on regional rice production in China. Clim Change, 2018, 147: 523-537.
[1] 刘二华, 周广胜, 武炳义, 宋艳玲, 何奇瑾, 吕晓敏, 周梦子. 1981—2010年长江中下游地区单季稻生殖生长期对气候变化和技术进步的响应[J]. 作物学报, 2023, 49(5): 1305-1315.
[2] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[3] 冯向前, 殷敏, 王孟佳, 马横宇, 刘元辉, 褚光, 徐春梅, 章秀福, 王丹英, 张运波, 陈松. 播期对长江下游不同类型晚稻品种产量的影响及其与水稻全育期温光资源配置间关系[J]. 作物学报, 2022, 48(10): 2597-2613.
[4] 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225.
[5] 唐健,唐闯,郭保卫,张诚信,张振振,王科,张洪程,陈恒,孙明珠. 氮肥施用量对机插优质晚稻产量和稻米品质的影响[J]. 作物学报, 2020, 46(01): 117-130.
[6] 吕伟生,曾勇军*,石庆华,潘晓华,黄山,商庆银,谭雪明,李木英,胡水秀. 机插早稻分蘖成穗特性及基本苗公式参数研究[J]. 作物学报, 2016, 42(03): 427-436.
[7] 郭保卫,花劲,周年兵,张洪程,陈波,舒鹏,霍中洋,周培建,程飞虎,黄大山,陈忠平,陈国梁,陈恒,戴其根,许轲,魏海燕,高辉. 双季晚稻不同类型品种产量及其群体动态特征差异研究[J]. 作物学报, 2015, 41(08): 1220-1236.
[8] 曾勇军,吕伟生,潘晓华,朱德峰,谭雪明,黄山,商庆银,石庆华. 氮肥追施方法和追用时期对超级早稻株型及物质生产的影响[J]. 作物学报, 2014, 40(11): 2008-2015.
[9] 徐建文,梅旭荣,居辉,李迎春,刘勤,杨建莹. 黄淮海地区冬小麦关键生育期不同灌溉水平对产量影响的模拟[J]. 作物学报, 2014, 40(08): 1485-1492.
[10] 唐海明,汤文光,肖小平,罗尊长,张帆,汪柯,杨光立. 冬种黑麦草对6种水稻土重金属含量及晚稻不同器官重金属累积与分配的影响[J]. 作物学报, 2012, 38(06): 1121-1126.
[11] 袁小乐,潘晓华,石庆华,吴建富,漆映雪. 超级早、晚稻品种的源库协调性[J]. 作物学报, 2009, 35(9): 1744-1748.
[12] 张久权;张凌霄;张明华;WATSON Clarence. 应用神经网络和统计模型预测大豆生长发育阶段[J]. 作物学报, 2009, 35(2): 341-347.
[13] 曾勇军;石庆华;潘晓华;韩涛. 施氮量对高产早稻氮素利用特征及产量形成的影响[J]. 作物学报, 2008, 34(08): 1409-1416.
[14] 肖小平;汤海涛;纪雄辉. 稻草还田模式对稻田土壤速效氮、钾含量及晚稻生长的影响[J]. 作物学报, 2008, 34(08): 1464-1469.
[15] 石庆华;李木英;许锦彪;谭雪明. 高温胁迫对早稻根系质膜ATPase活性及NH4+吸收的影响[J]. 作物学报, 2006, 32(07): 1044-1048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杜永;王艳;王学红;孙乃立;杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析[J]. 作物学报, 2007, 33(07): 1079 -1085 .
[2] 贺立源;徐尚忠;李建生. 玉米自交系苗期耐酸的生物学和营养学特性[J]. 作物学报, 2000, 26(02): 205 -209 .
[3] 宋开山;张柏;李方;段洪涛;王宗明. 玉米叶绿素含量的高光谱估算模型研究[J]. 作物学报, 2005, 31(08): 1095 -1097 .
[4] 潘庆民;于振文;王月福;田奇卓. 公顷产9000 kg小麦氮素吸收分配的研究[J]. 作物学报, 1999, 25(05): 541 -547 .
[5] 王爱云;田煦. 螯合稀土——硼在苎麻上的应用研究[J]. 作物学报, 1997, 23(05): 597 -602 .
[6] 张磊;张宝石;周荣华;高丽峰;赵光耀;宋彦霞;贾继增. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX2)的克隆及其遗传作图[J]. 作物学报, 2007, 33(09): 1419 -1425 .
[7] 庄克章;郭新宇;王纪华;王空军;吴正锋;刘鹏;董树亭;张吉旺. 高油115籽粒灌浆期光能利用效率[J]. 作物学报, 2007, 33(02): 230 -235 .
[8] 程颖;宋伟;刘志勇;解超杰;倪中福;彭惠茹;聂秀玲;杨作民;孙其信. 小麦品种贵农21抗条锈病基因的SSR标记[J]. 作物学报, 2006, 32(12): 1867 -1872 .
[9] 杨典洱;张承亮;陈翠霞;王岳光; 王斌;张超良;陈绍江. 禾谷镰刀菌引起玉米青枯病的抗性基因遗传分析[J]. 作物学报, 2002, 28(03): 389 -393 .
[10] 郑克武;邹江石;吕川根. N肥和栽插密度对杂交稻“两优培九”产量及N素吸收利用的影响[J]. 作物学报, 2006, 32(06): 885 -893 .