欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2408-2414.doi: 10.3724/SP.J.1006.2024.34204

• 研究简报 • 上一篇    下一篇

以甘蓝下胚轴为外植体的再生体系优化

赵美1,2(), 刘一玮1,2, 石翔天1,2, 李亚俐1,2, 申树林1,2, 尹能文1,2, 赵会彦1,2, 傅鹰3,*(), 曲存民1,2,*()   

  1. 1西南大学西部(重庆)科学城种质创制大科学中心, 重庆 400715
    2南方山地农业教育部工程研究中心 / 西南大学农学与生物科技学院, 重庆 400715
    3浙江省农业科学院作物与技术利用研究所, 浙江杭州 310021
  • 收稿日期:2023-12-05 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-11
  • 通讯作者: *傅鹰, E-mail: fy97@163.com; 曲存民, E-mail: drqucunmin@swu.edu.cn
  • 作者简介:E-mail: zhaomei123@email.swu.edu.cn
  • 基金资助:
    国家自然科学基金项目(32272150);重庆市自然科学基金项目(CSTB2022NSCQ-LZX0034);重庆市自然科学基金项目(CSTB2022TIAD-KPX0010)

Optimization of regeneration system from hypocotyls of Brassica oleracea L.

ZHAO Mei1,2(), LIU Yi-Wei1,2, SHI Xiang-Tian1,2, LI Ya-Li1,2, SHEN Shu-Lin1,2, YIN Neng-Wen1,2, ZHAO Hui-Yan1,2, FU Ying3,*(), QU Cun-Min1,2,*()   

  1. 1Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Southwest University, Chongqing 400715, China
    2Engineering Research Center of South Upland Agriculture, Ministry of Education / College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    3Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2023-12-05 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-11
  • Contact: *E-mail: fy97@163.com; E-mail: drqucunmin@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32272150);Natural Science Foundation of Chongqing(CSTB2022NSCQ-LZX0034);Natural Science Foundation of Chongqing(CSTB2022TIAD-KPX0010)

摘要:

针对甘蓝组织培养过程中再生体系难度大, 培养效率低的问题, 本研究以白花芥蓝下胚轴为外植体, 对离体培养关键影响因素——无菌苗光/暗培养时间、NaClO消毒时间、激素配比对甘蓝种子、不定芽分化及再生的影响进行了比较分析。结果表明, 75%无水乙醇40 s+5% NaClO 15 min消毒后, 将种子暗培养3 d, 再光培养3 d, 无菌苗生长最好; 预培养时培养基最佳激素组合是0.05 mg L-1 NAA (α-萘乙酸)+4 mg L-1 6-BA (6-苄氨基嘌呤); 筛选培养基的最佳激素组合为0.05 mg L-1 NAA+4 mg L-1 6-BA+250 mg L-1 Cb (羧苄青霉素), 愈伤发生率91.1%, 不定芽分化率57.3%; 生根培养基MS+30 g L-1蔗糖+7 g L-1琼脂+0.1 mg L-1 NAA+0.1%活性炭, 不定根产生数量多, 获得植株根系发达、生长势强。本研究建立的甘蓝组织培养优化体系能快速获得再生植株, 有助于加速甘蓝良种的繁育与评价。

关键词: 白花芥蓝, 下胚轴, 离体再生, 激素

Abstract:

Addressing the challenges of a difficult regeneration system and low culture efficiency in the tissue culture process of Brassica oleracea L., this study focused on using the hypocotyl of Brassica albograbra Bailey as explants, which was identified as a key influencing factor in in vitro culture. A comparative analysis was conducted to assess the effects of light/dark culture time, NaClO disinfection time, and hormone ratio on the differentiation and regeneration of Brassica oleracea L. seeds and adventitious buds. The results showed that the best growth of sterile seedlings was achieved when the seeds were disinfected with 75% anhydrous ethanol for 40 s + 5% NaClO 15 minutes. The seeds were then cultured in the dark for 3 d and then, followed by 3 d in the light. The optimal hormone combination for the pre-culture medium was 0.05 mg L-1 NAA+4 mg L-1 6-BA. In the screening culture medium, the optimal hormone combination was 0.05 mg L-1 NAA + 4 mg L-1 6-BA + 250 mg L-1 Cb (Carbenicillin) incidence of 91.1% and a differentiation rate of adventitious buds of 57.3%. For the rooting medium MS+30 g L-1 sucrose+7 g L-1 agar+0.1 mg L-1 NAA+0.1% activated carbon yielded a large number of adventitious roots with well-developed root systems and strong growth potential. The optimized tissue culture system established in this study for Brassica oleracea L. allows for the rapid production of regenerated plants. This system is beneficial for accelerating the breeding and evaluation of improved varieties of Brassica oleracea L.

Key words: Brassica albograbra Bailey, hypocotyl, in vitro regeneration, hormone combination

表1

甘蓝遗传转化所用的培养基"

培养基
Medium
配方
Formula
pH 用途
Application
M0 1/2 MS+30 mg L-1 蔗糖+7 g L-1 琼脂
1/2 MS+30 mg L-1 sucrose+7 g L-1 agar
5.84-5.88 无菌苗培养
Aseptic seedling cultivation
M1 MS+30 g L-1 蔗糖+7 g L-1 琼脂+4 mg L-1 6-BA+0.05 mg L-1 NAA
MS+30 g L-1 sucrose+7 g L-1 agar+4 mg L-1 6-BA+0.05 mg-1 NAA
5.84-5.88 预培养/共培养
Pre-culture/co-culture
M2 MS+30 g L-1 蔗糖+7 g L-1 琼脂+4 mg L-1 6-BA+0.05 mg L-1 NAA+250 mg L-1 Cb (羧苄青霉素)
MS+30 g L-1 sucrose+7 g L-1 agar+4 mg L-1 6-BA+0.05 mg L-1 NAA+250 mg L-1 Cb (Carbenicillin)
5.84-5.88 筛选培养
Screening culture
M3 MS+30 g L-1蔗糖+7 g L-1琼脂+0.1 mg L-1 NAA+0.1%活性炭
MS+30 g L-1 sucrose+7 g L-1 agar+0.1 mg L-1 NAA+0.1% activated carbon
5.84-5.88 生根培养
Rooting culture

图1

白花芥蓝离体再生过程 A: 种子发芽; B: 无菌苗; C: 下胚轴长诱导愈伤组织; D: 愈伤组织分化不定芽; E: 不定芽生长及继代培养; F: 生根培养; G: 水培; H: 土培。"

表2

5% NaClO不同处理时间对种子发芽的影响"

5% NaClO消毒时间
5% NaClO elimination time (min)
播种粒数
Seed number
污染率
Contamination rate (%)
种子发芽率
Germination rate (%)
12 750 31.2±0.50 a 95.4±0.03 a
13 750 20.4±1.25 b 96.5±0.02 a
14 750 9.6±0.61 c 95.8±0.03 a
15 750 0 98.0±0.02 a
16 750 0 71.0±0.04 b
17 750 0 54.1±0.02 c

表3

不同光培养条件对无菌苗生长及下胚轴分化的影响"

暗培养时间
Dark culture time
(d)
光培养时间
Light culture time
(d)
无菌苗长度
Growth length of aseptic seedlings (cm)
接种外植体数
Number of inoculated explants
愈伤发生率
Rate of callus
(%)
不定芽分化率
Differentiation rate of
adventitious buds (%)
6 0 2.4 100 68.0±12.17 b 24.0±10.54 c
5 1 3.2 100 75.0±7.81 b 29.0±7.04 bc
4 2 6.1 200 79.0±4.77 ab 34.5±4.77 abc
3 3 8.3 300 89.3±1.19 a 46.0±3.61 a
2 4 5.7 200 77.5±3.04 ab 39.5±5.27 ab
1 5 4.6 200 73.0±4.82 b 35.5±3.77 abc
0 6 2.9 100 70.0±7.94 b 33.0±7.55 abc

表4

不同浓度6-BA和NAA对下胚轴不定芽分化的影响"

激素及其浓度配比Hormone and its concentration ratio (mg L-1) 愈伤发生率
Rate of callus (%)
不定芽分化率
Differentiation rate of adventitious buds (%)
6-BA NAA
2.00 0.10 25.1±2.40 e 1.3±0.88 f
3.00 0.10 40.6±1.76 d 15.7±1.00 e
4.00 0.10 43.1±1.33 d 17.3±1.33 e
5.00 0.10 56.7±2.91 c 28.1±1.20 c
2.00 0.05 53.6±2.31 c 20.5±0.88 d
3.00 0.05 80.0±2.96 b 39.7±2.08 b
4.00 0.05 91.1±3.93 a 57.3±0.88 a
5.00 0.05 77.6±2.52 b 38.9±0.88 b
[1] 秦耀国, 杨翠芹, 程明军, 曹必好, 陈国菊, 雷建军. 培养基pH值对芥蓝离体再生的影响. 中国蔬菜, 2010, (6): 47-49.
Qin Y G, Yang C Q, Cheng M J, Cao B H, Chen G J, Lei J J. Effect of pH value of culture medium on Brassica albograbra Bailey in vitro regeneration. China Veget, 2010, (6): 47-49 (in Chinese with English abstract).
[2] 张智晖, 韩春梅. 芥蓝常见病虫害及其防治技术. 四川农业科技, 2011, (2): 39.
Zhang Z H, Han C M. Common diseases and insect pests of Chinese Kale and their control techniques. Sichuan Agric Sci Technol, 2011, (2): 39 (in Chinese).
[3] 薛生玲. 芥蓝八氢番茄红素脱氢酶基因BaPDS1BaPDS2功能差异分析. 四川农业大学硕士学位论文, 四川成都, 2018.
Xue S L. The Analysis of Functional Difference of BaPDS1 and BaPDS2 in Chinese Kale. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2018 (in Chinese with English abstract).
[4] 王俞丹. 芥蓝CRISPR/Cas9基因编辑体系建立及BocAOP2s的功能初步验证. 华南农业大学硕士学位论文, 广东广州, 2020.
Wang Y D. Establishment of CRISPR/Cas 9 Gene Editing System and Preliminary Functional Identification of BocAOP2s in Chinese Kale. MS Thesis of South China Agricultural University, Guangzhou, Guangdong, China, 2020 (in Chinese with English abstract).
[5] 何承坤. 芥蓝的分类地位. 见: 中国园艺学会首届青年学术讨论会论文集. 浙江杭州, 1994. pp 155-159.
He C K. On the atxonomy of kale. In:Proceedings of the First Youth Symposium of Chinese Horticultural Society. Hangzhou, Zhejiang, 1994. pp 155-159 (in Chinese).
[6] 秦耀国, 杨翠芹, 曹必好, 陈国菊, 雷建军. 芥蓝遗传育种与生物技术研究进展. 中国农学通报, 2009, 25(18): 296-299.
Qin Y G, Yang C Q, Cao B H, Chen G J, Lei J J. Advances in genetic breeding and biotechnology of Chinese Kale. Chin J Agron, 2009, 25(18): 296-299 (in Chinese with English abstract).
[7] 陈汉才, 吴增祥, 林悦欣, 沈卓, 黎庭耀, 杨易, 周轩, 张艳. 广东菜心、芥蓝研究现状与展望. 广东农业科学, 2021, 48(9): 62-71.
Chen H C, Wu Z X, Lin Y X, Shen Z, Li T Y, Yang Y, Zhou X, Zhang Y. Research status and prospect of flowering Chinese cabbage and Chinese kale in Guangdong. Guangdong Agric Sci, 2021, 48(9): 62-71 (in Chinese with English abstract).
[8] Sheng X, Yu H, Wang J, Shen Y, Gu H. Establishment of a stable, effective and universal genetic transformation technique in the diverse species of Brassica oleracea. Front Plant Sci, 2022, 13: 1021669.
[9] 申静静, 廖玉才, 李和平. 甘蓝型油菜叶片组织培养体系的优化. 湖北农业科学, 2014, 53: 447-450.
Shen J J, Liao Y C, Li H P. The optimization of regeneration system of Brassica napus L. leaf. Hubei Agric Sci, 2014, 53: 447-450 (in Chinese with English abstract).
[10] 黄科, 余小林, 吴秋云, 沈迎春, 向珣, 曹家树. 芥蓝植株再生体系的优化. 细胞生物学杂志, 2004, 26: 313-316.
Huang K, Yu X L, Wu Q Y, Shen Y C, Xiang X, Cao J S. Optimization of the regeneration system for Brassica albograbra Bailey plants. J Cell Biol, 2004, 26: 313-316 (in Chinese with English abstract).
[11] 胡志群, 江远彩, 陈淳. 芥蓝子叶离体培养再生植株的研究. 华南农业大学学报, 2006, 27(4): 113-114.
Hu Z Q, Jiang Y C, Chen C. Plant regeneration in vitro from cotyledon of Brassica albograbra Bailey. J South China Agric Univ, 2006, 27(4): 113-114 (in Chinese with English abstract).
[12] Horeau N, Arora R, Bhojwani S S. A comparative study of in vitro shoot regeneration from cotyledon and root explants of four varieties of Brassica oleracea L. Curr Sci, 1988, 57: 1349-1351.
[13] 李光远, 王宜娜, 王凤华. 不同激素对结球甘蓝下胚轴离体培养的影响. 安徽农学通报, 2007, 13(15): 59-60.
Li G Y, Wang Y N, Wang F H. Influence of hormones on in vitro culture of under hypocotyls of Brassica oleracea L. Anhui Agric Sci Bull, 2007, 13(15): 59-60 (in Chinese with English abstract).
[14] 周林, 曾国平, 章崇玲, 邓智泉. 芥蓝的组织培养研究. 长江蔬菜, 2006, (8): 45-46.
Zhou L, Zeng G P, Zhang C L, Deng Z Q. Study on tissue culture of Brassica albograbra Bailey. J Changjiang Veget, 2006, (8): 45-46 (in Chinese with English abstract).
[15] 唐君, 张蜀宁, 侯喜林, 王淑敏, 孙成振. 芥蓝高频离体再生体系的建立. 南京农业大学学报, 2011, 34(2): 29-32.
Tang J, Zhang S N, Hou X L, Wang S M, Sun C Z. Establishment of high frequency in vitro regeneration system of Brassica albograbra Bailey. J Nanjing Agric Univ, 2011, 34(2): 29-32 (in Chinese with English abstract).
[16] 许端祥, 方淑桂, 陈文辉. 甘蓝雄性不育系组培快繁技术研究. 福建热作科技, 2007, 32(1): 15-16.
Xu D X, Fang S G, Chen W H. Study on tissue culture and rapid propagation of male sterile line of Brassica oleracea L. Fujian Sci Technol Trop Crops, 2007, 32(1): 15-16 (in Chinese with English abstract).
[17] 黄文华, 庄东红, 郑汉藩, 邵舜梦. 芥蓝的组织培养和快速繁殖. 植物生理学通讯, 1999, 35(2): 130.
Huang W H, Zhuang D H, Zheng H F, Shao S M. Tissue culture and rapid propagation of Brassica albograbra Bailey. Plant Physiol Commun, 1999, 35(2): 130 (in Chinese with English abstract).
[18] 黄俊轩, 李双跃, 李建科, 刘艳军, 杨静慧. 花椰菜叶片离体再生技术的研究. 天津农学院学报, 2006, 13(4): 21-23.
Huang J X, Li S Y, Li J K, Liu Y J, Yang J H. Regeneration by leaf of Brassicao leracea var. Botrytis. J Tianjin Agric Univ, 2006, 13(4): 21-23 (in Chinese with English abstract).
[19] Wong K W, Loh C S. In vitro regeneration of plantlets in Brassica alboglabra. Plant Cell Tissue Organ Cult, 1987, 10: 143-148.
[20] Pua E C, Trần T, Chua N H. High frequency plant regeneration from stem explants of Brassica alboglabra Bailey in vitro. Plant Cell Tissue Organ Cult, 1989, 17: 143-152.
[21] 陈琼娥, 钟凤林, 林碧英. 芥蓝组织培养研究. 亚热带植物科学, 2011, 40(1): 34-37.
Chen Q E, Zhong F L, Lin B Y. Study on tissue culture of Brassica albograbra Bailey. Subtrop Plant Sci, 2011, 40(1): 34-37 (in Chinese with English abstract).
[22] 赵军良, 逯保德, 梁爱华, 赵美华. 大白菜原生质体培养再生体系的优化. 西北植物学报, 2005, 25: 546-551.
Zhao J L, Lu B D, Liang A H, Zhao M H. Optimization of the system protoplast culture and regeneration for Chinese cabbage. Acta Bot Borealli-Occident Sin, 2005, 25: 546-551 (in Chinese with English abstract).
[23] 赵军良, 逯宝德, 赵美华. 大白菜无菌苗子叶组织培养再生植株. 华北农学报, 2004, 19(2): 17-19.
doi: 10.3321/j.issn:1000-7091.2004.02.005
Zhao J L, Lu B D, Zhao M H. Plant regeneration from cotyledons of Chinese cabbage cultured in vitro. Acta Agric Boreali Sin, 2004, 19(2): 17-19 (in Chinese with English abstract).
[24] 廖志强, 邬贤梦, 孙娟, 官春云. 甘蓝型油菜下胚轴一步不定芽再生培养及遗传转化应用. 分子植物育种, 2015, 13: 793-799.
Liao Z Q, Wu X M, Sun J, Guan C Y. One-step shoot regeneration culture established from hypocotyl of Brassica napus L. and applied to transformation. Mol Plant Breed, 2015, 13: 793-799 (in Chinese with English abstract).
[25] 李楠, 张恩慧, 许忠民, 陈丽潇, 姜娇, 曹丽红. 甘蓝根系再生植株技术研究. 西北农林科技大学学报(自然科学版), 2019, 47(2): 103-111.
Li N, Zhang E H, Xu Z M, Chen L X, Jiang J, Cao L H. Plant Regeneration technology of Brassica oleracea var. capitata root. J Northwest A&F Univ (Nat Sci Edn), 2019, 47(2): 103-111 (in Chinese with English abstract).
[26] Luciani G F, Mary A K, Pellegrini C, Curvetto N R. Effects of explants and growth regulators in garlic callus formation and plant regeneration. Plant Cell Tissue Organ Cult, 2006, 87: 139-143.
[27] Pretto F R, Santarém R E. Callus formation and plant regeneration from Hypericum perforatum leaves. Plant Cell Tissue Organ Cult, 2000, 62: 107-113.
[28] Ahmad S, Spoor W. Effects of NAA and BAP on callus culture and plant regeneration in curly kale (Brassica oleraces L.). Pak J Biol Sci, 1999, 2: 109-112.
[29] Kou Y P, Ma G H, Teixeira da Silva J A, Liu N. Callus induction and shoot organogenesis from anther cultures of Curcuma attenuata Wall. Plant Cell Tissue Organ Cult, 2013, 112: 1-7.
[30] Demmig-Adams B, Adams W W IIl. Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 599-626.
[31] 王景雪, 孙毅, 崔贵梅, 刘少翔, 王果萍, 尚勇进, 王卉. 在油菜组织培养中激素及基因型对下胚轴分化的影响. 中国油料作物学报, 2000, 22: 12-14.
Wang J X, Sun Y, Cui G M, Liu S X, Wang G P, Shang Y J, Wang H. Effects of hormones and genotypes on hypocotyl differentiation in tissue culture. Chin J Oil Crops, 2000, 22: 12-14 (in Chinese with English abstract).
[32] 郑爱红, 张芬, 袁巧, 肖楠, 杨莉媛, 甘颖, 杨朝君, 孙勃. 白花芥蓝离体再生植株的研究. 分子植物育种, 2017, 15: 1022-1028.
Zheng A H, Zhang F, Yuan Q, Xiao N, Yang L Y, Gan Y, Yang Z J, Sun B. The study on regeneration in vitro of Brassica alboglabra Bailey. Mol Plant Breed, 2017, 15: 1022-1028 (in Chinese with English abstract).
[33] 王慧芳. 甘蓝组织培养再生、转化及筛选系统的优化研究. 山西农业大学硕士学位论文, 山西晋中, 2004.
Wang H F. Optimization of Tissue Culture Regeneration, Transformation and Screening System of Brassica napus L. MS Thesis of Shanxi Agricultural University, Jinzhong, Shanxi, China, 2004 (in Chinese with English abstract).
[34] 李尊文. 芥蓝悬浮细胞培养的初步研究与ABD2的遗传转化. 福建农林大学硕士学位论文, 福建福州, 2022.
Li Z W. Preliminary Study on Suspension Cell Culture of Chinese Kale and Genetic Transformation of ABD2. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2022 (in Chinese with English abstract).
[35] 倪德祥. 光在植物组织培养中的调控作用. 自然杂志, 1986, 9(3): 35-40.
Ni D X. The regulatory role of light in plant tissue culture. Chin J Nat, 1986, 9(3): 35-40 (in Chinese).
[36] 董飞, 陈运起, 刘世琦, 高莉敏, 王传增. 种子消毒方法对大葱无菌苗培养的影响. 中国蔬菜, 2011, (18): 74-76.
Dong F, Chen Y Q, Liu S Q, Gao L M, Wang C Z. Influence of seed disinfection methods on Aseptic Welsh onion tissue culture. China Veget, 2011, (18): 74-76 (in Chinese with English abstract).
[37] 王欢, 付小蕾, 毛洪玉, 祝朋芳. 根癌农杆菌介导观赏羽衣甘蓝遗传转化体系优化. 沈阳农业大学学报, 2019, 50: 543-549.
Wang H, Fu X L, Mao H Y, Zhu P F. Agrobacterium tumefaciens-mediated genetic transformation system in Brassica oleracea var. acephala. J Shenyang Agric Univ, 2019, 50: 543-549 (in Chinese with English abstract).
[38] 刘洁. 结球甘蓝离体遗传转化体系的建立及转FOC1基因植株的获得. 甘肃农业大学硕士学位论文, 甘肃兰州, 2016.
Liu J. Agrobacterium Mediated Transformation and Regeneration of Transgenic Plants with FOC1 Gene in Brassica oleracea. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2016 (in Chinese with English abstract).
[39] Palmer C E. Enhanced shoot regeneration from Brassica campestris by silver nitrate. Plant Cell Rep, 1992, 11: 541-545.
doi: 10.1007/BF00233088 pmid: 24213282
[40] 唐丽. LED光质在植物组织培养和芽苗菜栽培中的调控作用及机理. 南京农业大学硕士学位论文, 江苏南京, 2013.
Tang L. Regulation and Mechanism of LED Light Quality in Plant Tissue Culture and Sprouts Cultivation. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 (in Chinese with English abstract).
[41] 林小苹, 赖钟雄, 黄浅. 光质对植物离体培养的影响. 亚热带农业研究, 2008, 4(1): 73-80.
Lin X P, Lai Z X, Huang Q. Effects of light quality on plant tissue culture. Subtrop Agric Res, 2008, 4(1): 73-80 (in Chinese with English abstract).
[42] 尾田羲治. 植物光形态建成. 刘瑞征, 译. 北京: 科学出版社, 1981. pp 1-5.
Oda X Z. Plant Photomorphogenesis. Liu R Z, trans trans. Beijing: Science Press, 1981. pp 1-5 (in Chinese).
[43] 余叔文, 汤章城. 植物生理与分子生物学. 北京: 科学出版社, 1998. pp 633-654.
Yu S W, Tang Z C. Plant Physiology and Molecular Biology. Beijing: Science Press, 1998. pp 633-654 (in Chinese).
[44] 陈汝民. 现代植物科学引论. 广州: 广东高等教育出版社, 1995. pp 415-428.
Chen R M. Introduction to Modern Plant Science. Guangzhou: Guangdong Higher Education Press, 1995. pp 415-428 (in Chinese).
[45] 崔堂兵, 郭勇, 林炜铁. 提高植物细胞培养法生产次级代谢物产量的方法. 植物生理学通讯, 2001, 37: 479-482.
Cui T B, Guo Y, Lin W T. The ways to enhance the production of secondary metabolites by plant cell culture. Plant Physiol Commun, 2001, 37: 479-482 (in Chinese with English abstract).
[46] Orozco-Mosqueda M D C, Santoyo G, Glick B R. Recent advances in the bacterial phytohormone modulation of plant growth. Plants, 2023, 12: 606.
[47] Rademacher W. Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul, 2015, 34: 845-872.
[48] 王冬梅, 黄学林, 黄上志. 细胞分裂素类物质在植物组织培养中的作用机制. 植物生理学通讯, 1996, 32: 373-377.
Wang D M, Huang X L, Huang S Z. The action mechanism of cytokinins in plant tissue culture. Plant Physiol Commun, 1996, 32: 373-377 (in Chinese with English abstract).
[49] 王忠. 植物生理学. 北京: 中国农业出版社, 2000. pp 323-330.
Wang Z. Plant Physiology. Beijing: China Agriculture Press, 2000. pp 323-330 (in Chinese).
[50] Wong W C. In vitro propagation of bananas (Musa spp.): initiation, proliferation and development of shoot-tip cultures on defined media. Plant Cell Tissue Organ Cult, 2004, 6: 159-166.
[51] Gerszberg A. Tissue culture and genetic transformation of cabbage (Brassica oleracea var. capitata): an overview. Planta, 2018, 248: 1037-1048.
doi: 10.1007/s00425-018-2961-3 pmid: 30066219
[52] 曹家树, 余小林, 黄爱军, 徐淑英. 提高白菜离体培养植株再生频率的研究. 园艺学报, 2000, 27: 452-454.
Cao J S, Yu X L, Huang A J, Xu S Y. Study on improving plant regeneration frequency of Chinese cabbage in vitro. Acta Hortic Sin, 2000, 27: 452-454 (in Chinese with English abstract).
[53] Shin K S, Murthy H N, Heo J W, Hahn E J, Paek K Y. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant, 2008, 30: 339-343.
[54] Ramírez-Mosqueda M A, Iglesias-Andreu L G, Bautista-Aguilar J R. The effect of light quality on growth and development of in vitro plantlet of Stevia rebaudiana Bertoni. Sugar Technol, 2017, 19: 331-336.
[1] 祁稼民, 许春苗, 肖斌. 马铃薯TIFY基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(9): 2297-2309.
[2] 李旭娟, 李纯佳, 田春艳, 孔春艳, 徐超华, 刘新龙. 甘蔗硝酸盐转运蛋白1/肽转运蛋白家族6.4基因(ScNPF6.4)克隆及其调控分蘖功能分析[J]. 作物学报, 2024, 50(8): 2131-2142.
[3] 周香玉, 徐劲松, 谢伶俐, 许本波, 张学昆. 甘蓝型油菜苗期响应渍害胁迫的生理调控机制[J]. 作物学报, 2024, 50(4): 1015-1029.
[4] 张慧, 张欣雨, 袁旭, 陈伟达, 杨婷. 烟草叶片响应镉胁迫的差异表达基因鉴定及分析[J]. 作物学报, 2024, 50(4): 944-956.
[5] 贺佳奇, 白羿雄, 姚晓华, 姚有华, 安立昆, 王玉琴, 王小萍, 李新, 崔永梅, 吴昆仑. 刈割对青稞恢复特性及籽粒和秸秆产量品质特性的影响[J]. 作物学报, 2024, 50(3): 747-755.
[6] 薛明, 汪晨晨, 姜露光, 刘浩, 张路遥, 陈赛华. 玉米花序发育基因AFP1的定位及功能研究[J]. 作物学报, 2024, 50(3): 603-612.
[7] 王恒波, 冯春燕, 张以星, 谢婉婕, 杜翠翠, 吴明星, 张积森. 甘蔗割手密种转录因子NAP亚家族的鉴定及SsNAP2a参与叶片衰老的功能分析[J]. 作物学报, 2024, 50(1): 110-125.
[8] 宋松泉, 唐翠芳, 雷华平, 姜孝成, 王伟青, 程红焱. 种子休眠与萌发调控的研究进展[J]. 作物学报, 2024, 50(1): 1-15.
[9] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[10] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[11] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[12] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展[J]. 作物学报, 2023, 49(3): 585-596.
[13] 韩贝, 孙思敏, 孙伟男, 杨细燕, 张献龙. 植物体细胞胚胎发生的分子机制[J]. 作物学报, 2023, 49(2): 299-309.
[14] 朱继杰, 王士杰, 赵红霞, 贾晓昀, 李妙, 王国印. 田间条件下不同棉花品种叶片响应化学脱叶剂噻苯隆的转录组分析[J]. 作物学报, 2023, 49(10): 2705-2716.
[15] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!