欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (9): 2415-2424.doi: 10.3724/SP.J.1006.2024.41005

• 研究简报 • 上一篇    

干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响

刘志鹏(), 苟志文, 柴强*(), 殷文*(), 樊志龙, 胡发龙, 范虹, 王琦明   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2024-01-23 接受日期:2024-05-21 出版日期:2024-09-12 网络出版日期:2024-06-03
  • 通讯作者: *柴强, E-mail: chaiq@gsau.edu.cn; 殷文, E-mail: yinwen@gsau.edu.cn
  • 作者简介:E-mail: lzp1102@163.com
  • 基金资助:
    国家自然科学基金区域联合重点项目(U21A20218);国家自然科学基金区域联合重点项目(32101857);财政部和农业农村部国家现代农业产业技术体系建设专项(绿肥, CARS-22-G-12);甘肃省拔尖领军人才项目(GSBJLJ-2022-23)

Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area

LIU Zhi-Peng(), GOU Zhi-Wen, CHAI Qiang*(), YIN Wen*(), FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming   

  1. State Key Laboratory of Aridland Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2024-01-23 Accepted:2024-05-21 Published:2024-09-12 Published online:2024-06-03
  • Contact: *E-mail: chaiq@gsau.edu.cn; E-mail: yinwen@gsau.edu.cn
  • Supported by:
    Natural Science Foundation of China(U21A20218);Natural Science Foundation of China(32101857);China Agriculture Research System of MOF and MARA(Green manure, CARS-22-G-12);Gansu Province Top Leading Talent Project(GSBJLJ-2022-23)

摘要:

为探究插种豆科绿肥对传统小麦、玉米多样化种植模式产量性能指标的影响, 通过配置豆科绿肥构建干旱灌区作物高产技术途径, 依托2017年布设的田间定位试验, 于2019—2021年对小麦、玉米传统种植模式及配置豆科绿肥后主栽作物叶面积指数(LAI)、叶日积(LAD)、作物生长率(CGR)、籽粒产量(GY)及产量构成要素的响应特征进行研究, 明确基于绿肥提升作物多样化水平进而提高作物产量的理论基础。试验设单作玉米(M)、单作小麦(W)一年一收、小麦复种绿肥(W-G)和小麦间作玉米(W||M)一年两收、小麦复种绿肥间作玉米(W-G||M)一年三收共5种作物多样化水平不同的种植模式。结果表明, 不同种植系统混合籽粒产量随作物多样化水平的提高而提高, 一年两收模式W||M显著高于W和M, W-G显著高于W, 一年三收模式W-G||M显著高于W||M和W-G; 净占地面积下, 两种组分作物籽粒产量随多样化水平的提高而提高。LAI、LAD和主栽作物生育后期CGR等产量性能指标也随作物多样化水平的提高而提高。产量构成要素方面, 随作物多样化水平的提高, 小麦穗粒数、玉米有效穗数随之提高; W-G在小麦穗粒数和千粒重方面显著高于W。通径分析显示, 组分作物小麦主要通过穗粒数的增加而实现增产, 组分作物玉米主要通过单位面积有效穗数的增加实现增产。本研究表明, 随作物多样化水平的提升, 主栽作物籽粒产量和产量性能指标也随之提升, 干旱灌区可通过配置豆科绿肥提升种植系统作物多样化水平, 从而实现增产。

关键词: 作物多样化, 绿肥, 间作, 复种, 产量性能指标

Abstract:

To investigate the impact of multiple cropping with leguminous green manure on yield performance indicators of wheat and maize in diversified cropping patterns, and to establish a high-yield technology pathway for crops in arid irrigation areas through the application of leguminous green manure, a field positioning experiment was conducted in 2017. Leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), grain yield (GY), and the response characteristics of yield components were assessed from 2019 to 2021 to determine the feasibility of enhancing crop diversification and improving crop yield through the use of green manure. The experiment consisted of five cropping patterns with varying levels of crop diversification: monoculture maize (M), monoculture wheat (W) with a once-a-year harvest, wheat multiple cropped with green manure (W-G) and wheat intercropped with maize (W||M) with a twice-a-year harvest, and wheat multiple cropped with green manure intercropped with maize (W-G||M) with a thrice-a-year harvest. The results indicated that the mixed grain yield of different cropping systems increased with the level of crop diversification. The twice-a-year harvest pattern W||M showed significantly higher yield than W and M, while W-G exhibited significantly higher yield than W. The three-harvest-a-year pattern W-G||M showed significantly higher yield than W||M and W-G. Under net acreage, the grain yield of both component crops increased with higher levels of diversification. Yield performance indicators such as LAI, LAD, and late phenological stage CGR of the main crop also increased with increasing levels of crop diversification. Regarding yield components, the number of kernels in the spike of wheat and the number of ears of maize increased with higher levels of crop diversification. W-G showed significantly higher values than W for the number of kernels in the spike of wheat and the weight of 1000 kernels. Pathway analysis revealed that the yield increase in wheat was primarily attributed to the increase in the number of kernels in the ear, while the yield increase in maize was mainly due to the increase in the effective number of ears per unit area. The study demonstrated that increased levels of crop diversification led to higher grain yield and improved yield performance indicators of the main crop. Moreover, in arid irrigated areas, the implementation of legume green manure to enhance crop diversification in cropping systems can contribute to achieving higher yields.

Key words: crop diversification, green manure, intercropping, multiple cropping, yield performance

图1

各处理小麦、玉米及间作群体全生育期叶面积指数变化动态 W-G||M: 春小麦-箭筈豌豆||玉米; W||M: 春小麦||玉米; W-G: 春小麦-箭筈豌豆; M: 单作玉米; W: 单作春小麦。"

图2

不同处理作物群体全生育期总叶日积 不同小写字母代表同一年份中处理差异显著(P = 0.05)。"

图3

不同种植模式作物生长率 W-G||M: 春小麦-箭筈豌豆||玉米; W||M: 春小麦||玉米; W-G: 春小麦-箭筈豌豆; M: 单作玉米; W: 单作春小麦。"

表1

2019-2021年不同处理小麦、玉米籽粒产量"

年份
Year
处理
Treatment
籽粒产量Grain yield (kg hm-2)
小麦Wheat 玉米Maize 总产量Total grain yield
2019 W-G||M 4118±90 c 9591±857 b 13,709±838 a
W||M 3731±108 d 9051±196 b 12,782±299 a
M 11,920±567 a 11,920±567 b
W-G 6588±128 a 6588±128 c
W 6203±346 b 6203±346 c
2020 W-G||M 3071±214 c 10,907±240 b 13,979±398 a
W||M 3016±22 c 9840±183 c 12,856±198 b
M 11,952±586 a 11,952±586 c
W-G 6761±195 a 6761±195 d
W 5874±118 b 5874±118 e
2021 W-G||M 3817±109 c 9800±558 b 13,617±574 a
W||M 3278±59 d 8802±173 c 12,080±206 b
M 13,157±784 a 13,157±784 b
W-G 6647±658 a 6647±658 c
W 5858±387 b 5858±387 d
显著性(P值) Significance (P-value)
种植模式Cropping pattern (C) 0*** 0*** 0***
年份Year (Y) 0.001** 0.033* 0.967
种植模式×年份 C×Y 0.016* 0.007** 0.033*

表2

2019-2021年不同种植模式净占地面积下小麦玉米产量构成"

年份Year 处理Treatment 穗数
Spike number (×104 ear hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
小麦Wheat 玉米Maize 小麦Wheat 玉米Maize 小麦Wheat 玉米Maize
2019 W-G||M 872.73±14.60 a 9.48±0.48 a 40.93±1.76 a 606.87±6.91 a 47.00±1.25 a 430.06±6.87 a
W||M 876.87±23.61 a 8.86±0.19 a 38.11±2.02 ab 546.40±23.85 b 42.60±2.00 b 401.42±7.03 b
M 7.73±0.23 b 549.40±37.20 b 397.28±9.42 b
W-G 876.40±14.83 a 36.77±1.80 b 41.27±1.10 b
W 851.31±20.77 a 33.37±0.49 c 40.37±0.67 b
2020 W-G||M 851.33±8.36 a 9.57±0.17 a 35.87±0.25 a 592.67±6.47 a 48.20±1.87 a 429.06±10.81 a
W||M 840.73±8.44 a 9.10±0.15 b 30.67±0.83 c 538.93±13.63 c 41.31±1.31 c 414.56±2.22 a
M 7.51±0.28 c 566.27±10.74 b 417.00±17.02 a
W-G 839.53±20.42 a 32.17±0.97 b 46.38±0.86 ab
W 832.60±10.10 a 26.80±0.35 d 44.65±0.06 b
2021 W-G||M 877.33±3.79 a 9.27±0.18 a 36.67±1.53 a 564.27±46.25 a 47.13±1.35 a 399.27±8.73 b
W||M 851.67±3.79 b 7.45±0.26 b 35.33±2.08 a 566.93±41.89 a 43.47±0.56 b 421.16±3.29 a
M 7.50±0.12 b 554.13±22.35 a 428.79±5.86 a
W-G 843.33±3.21 bc 35.00±1.00 a 46.01±0.52 a
W 837.33±6.66 c 33.00±1.00 b 43.71±1.37 b

图4

小麦玉米产量构成要素路径分析 SN: 小麦穗数; EN: 玉米穗数; KNS: 穗粒数; TKW: 千粒重; GY: 籽粒产量; 实线: 直接路径; 虚线: 间接路径; 粗体值: 决策系数; 细体值: 通径系数。"

[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[2] 王凯澄, 韩桐, 臧华栋, 陈阜, 薄晓智, 褚庆全. 基于地貌分区的近30年中国粮食生产空间分异研究. 作物学报, 2021, 47: 2501-2510.
doi: 10.3724/SP.J.1006.2021.03068
Wang K C, Han T, Zang H D, Chen F, Bo X Z, Chu Q Q. Spatial distribution of Chinese grain production in the past 30 years based on geomorphological division. Acta Agron Sin, 2021, 47: 2501-2510 (in Chinese with English abstract).
[3] Kremen C, Iles A, Bacon C. Diversified farming systems: an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc, 2012, 17: 44-63.
[4] Beillouin D, Ben-Ari T, Malezieux E, Seufert V, Makowski D. Positive but variable effects of crop diversification on biodiversity and ecosystem services. Global Chang Biol, 2021, 27: 4697-4710.
[5] Cong W F, Li C J, Wang G Z, Zhang F S. Designing diversified cropping systems in China: theory, approaches and implementation. Front Agric Sci Eng, 2021, 8: 362-372.
[6] 刘巽浩. 论我国耕地种植指数(复种)的潜力. 作物杂志, 1997, (3): 1-3.
Liu X H. On the potential of cropping index (sequential cropping) of arable land in China. Crops, 1997, (3): 1-3 (in Chinese).
[7] Yin X, Song Z, Shi S, Bai Z, Jiang Y, Zheng A, Huang W, Chen N, Chen F. Developments and prospects of multiple cropping in China. Farm Syst, 2024, 2: 100083.
[8] Li C J, Hoffland E, Kuyper T W, Yu Y, Zhang C C, Li H G, Zhang F S, van der Werf W. Syndromes of production in intercropping impact yield gains. Nat Plants, 2020, 6: 653-660.
doi: 10.1038/s41477-020-0680-9 pmid: 32483328
[9] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, Wang Y, Li J P, Wang Y, Xia H Y, Mei P P, Wang X F, Zhao J H, Yu R P, Zhang W P, Che Z X, Gui L G, Callaway R M, Tilman D, Li L. Long-term increased grain yield and soil fertility from intercropping. Nat Sust, 2021, 4: 943-950.
[10] Li C J, Stomph T-J, Makowski D, Li H, Zhang C H, Zhang F S, van der Werf W. The Productive performance of intercropping. Proc Natl Acad Sci USA, 2023, 120: e2201886120.
doi: 10.1073/pnas.2201886120 pmid: 36595678
[11] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021, 47: 929-941 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01047
[12] 樊志龙, 柴强, 曹卫东, 于爱忠, 赵财, 谢军红, 殷文, 胡发龙. 绿肥在我国旱地农业生态系统中的服务功能及其应用. 应用生态学报, 2020, 31: 1389-1402.
doi: 10.13287/j.1001-9332.202004.023
Fan Z L, Chai Q, Cao W D, Yu A Z, Zhao C, Xie J H, Yin W, Hu F L. Ecosystem service function of green manure and its application in dryland agriculture of China. Chin J Appl Ecol, 2020, 31: 1389-1402 (in Chinese with English abstract).
[13] 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展. 作物学报, 2022, 48: 1-14.
doi: 10.3724/SP.J.1006.2022.03058
Jian S L, Li S X, Liu S Q, Li X N. Research advances of cover crops and their important roles. Acta Agron Sin, 2022, 48: 1-14 (in Chinese with English abstract).
[14] Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in northwest China. J Environ Manag, 2022, 321: 115859.
[15] Liu K, Bandara M, Hamel C, Knight J D, Gan Y T. Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments. Field Crops Res, 2020, 248: 107657.
[16] 罗跃, 张久东, 周国朋, 常单娜, 高嵩涓, 包兴国, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28: 402-413.
Luo Y, Zhang J D, Zhou G P, Chang D N, Gao S J, Bao X G, Che Z X, Zhu Q, Cao W D. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi Oasis irrigated area. J Plant Nutr Fert, 2022, 28: 402-413 (in Chinese with English abstract).
[17] Gan Y T, Hamel C, O’Donovan J T, Cutforth H, Zentner R P, Campbell C A, Niu Y N, Poppy L. Diversifying crop rotations with pulses enhances system productivity. Sci Rep, 2015, 5: 14625.
doi: 10.1038/srep14625 pmid: 26424172
[18] 张宾, 赵明, 董志强, 李建国, 陈传永, 孙锐. 作物高产群体LAI动态模拟模型的建立与检验. 作物学报, 2007, 33: 612-619.
Zhang B, Zhao M, Dong Z Q, Li J G, Chen C Y, Sun R. Establishment and test of lai dynamic simulation model for high yield population. Acta Agron Sin, 2007, 33: 612-619 (in Chinese with English abstract).
[19] Yin W, Chai Q, Guo Y, Feng F X, Zhao C, Yu A Z, Hu F L. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. J Agric Sci, 2016, 8: 26-42.
[20] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159-4169.
doi: 10.3864/j.issn.0578-1752.2011.20.004
Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159-4169 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.20.004
[21] 薛娴, 许会敏, 吴鸿洋, 沈应柏, 肖建伟, 万迎朗. 植物光合作用循环电子传递的研究进. 植物生理学报, 2017, 53: 145-158.
Xue X, Xu H M, Wu H Y, Shen Y B, Xiao J W, Wan Y L. Research progress of cyclic electron transport in plant photosynthesis. Plant Physiol J, 2017, 53: 145-158 (in Chinese with English abstract).
[22] Watiki J, Fukai S, Banda J, Keating B. Radiation interception and growth of maize/cowpea intercrop as affected by maize plant density and cowpea cultivar. Field Crops Res, 1993, 35: 123-133.
[23] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
doi: 10.11849/zrzyxb.2015.06.016
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Resour, 2015, 30: 1057-1066 (in Chinese with English abstract).
[24] Liu G Z, Yang Y S, Guo X X, Liu W M, Xie R Z, Ming B, Xue J, Wang K R, Li S K, Hou P. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha-1. Field Crops Res, 2022, 283: 108544.
[25] Ciampitti I A, Zhang H, Friedemann P, Vyn T J. Potential physiological frameworks for mid-season field phenotyping of final plant nitrogen uptake, nitrogen use efficiency, and grain yield in maize. Crop Sci, 2012, 52: 2728-2742.
[26] 柴强, 胡发龙, 陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展. 中国生态农业学报, 2017, 25: 19-26.
Chai Q, Hu F L, Chen G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping. Chin J Eco-Agric, 2017, 25: 19-26 (in Chinese with English abstract).
[27] 李含婷, 柴强, 胡发龙, 王国璀, 王琦明, 樊志龙, 殷文, 范虹. 间作绿肥弥补减施氮肥引起的玉米产量损失. 植物营养与肥料学报, 2022, 28: 1329-1340.
Li H T, Chai Q, Hu F L, Wang G C, Wang Q M, Fan Z L, Yin W, Fan H. Intercropping green manure with maize reduces nitrogen fertilizer input and stabilizes grain yield. J Plant Nutr Fert, 2022, 28: 1329-1340 (in Chinese with English abstract).
[28] 杨昭, 柴强, 王玉, 苟志文, 樊志龙, 胡发龙, 殷文. 河西绿洲灌区减量灌溉下绿肥对小麦光合源及产量的补偿效应. 植物营养与肥料学报, 2022, 28: 1003-1014.
Yang Z, Chai Q, Wang Y, Gou Z W, Fan Z L, Hu F L, Yin W. Compensation of green manure on photosynthetic source and yield loss of wheat caused by reduced irrigation in Hexi oasis irrigation area. J Plant Nutr Fert, 2022, 28: 1003-1014 (in Chinese with English abstract).
[29] 杜进勇, 柴强, 王一帆, 范虹, 胡发龙, 殷文, 李登业. 地上地下互作强度对小麦间作玉米光合特性的影响. 作物学报, 2019, 45: 1398-1406.
doi: 10.3724/SP.J.1006.2019.81093
Du J Y, Chai Q, Wang Y F, Fan H, Hu F L, Yin W, Li D Y. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping. Acta Agron Sin, 2019, 45: 1398-1406 (in Chinese with English abstract).
[30] 殷芳, 何小七, 樊志龙, 胡发龙, 范虹, 殷文, 柴强. 复种绿肥补偿减量施氮导致的小麦光合效能和产量损失. 植物营养与肥料学报, 2022, 28: 1990-2000.
Yin F, He X Q, Fan Z L, Hu F L, Fan H, Yin W, Chai Q. Compensation of photosynthesis indexes and yield loss of wheat caused by nitrogen reduction with multiple cropping green manures. J Plant Nutr Fert, 2022, 28: 1990-2000 (in Chinese with English abstract).
[31] Zhou G P, Chang D N, Gao S J, Liang T, Liu R, Cao W D. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biol Fert Soils, 2021, 57: 547-561.
[32] 马国胜, 薛吉全, 路海东, 张仁和, 邰书静. 不同类型饲用玉米品种群体生理指标的研究. 草业学报, 2006, 15(5): 70-75.
Ma G S, Xue J Q, Lu H D, Zhang R H, Tai S J. A study on the population physiological indices of different types of forage Zea mays. Acta Pratac Sin, 2006, 15(5): 70-75 (in Chinese with English abstract).
[33] 杜青峰, 王党军, 于翔宇, 姚露花, 和玉吉, 王瑞, 马生兰, 郭彦军. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016, 25(3): 225-233.
doi: 10.11686/cyxb2015483
Du Q F, Wang D J, Yu X Y, Yao L H, He Y J, Wang R, Ma S L, Guo Y J. The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake. Acta Pratac Sin, 2016, 25(3): 225-233 (in Chinese with English abstract).
[34] 王国璀, 张松茂, 胡发龙, 殷文, 樊志龙, 范虹, 于爱忠, 赵财, 柴强. 绿洲灌区春小麦产量和氮素利用率对绿肥还田量的响应. 植物营养与肥料学报, 2021, 27: 1164-1172.
Wang G C, Zhang S M, Hu F L, Yin W, Fan Z L, Fan H, Yu A Z, Zhao C, Chai Q. Response of grain yield and nitrogen utilization efficiency of spring wheat to green manure incorporation amount in oasis irrigation district. J Plant Nutr Fert, 2021, 27: 1164-1172 (in Chinese with English abstract).
[35] 赵明, 李建国, 张宾, 董志强, 王美云. 论作物高产挖潜的补偿机制. 作物学报, 2006, 32: 1566-1572.
Zhao M, Li J G, Zhang B, Dong Z Q, Wang M Y. The compensatory mechanism in exploring crop production potential. Acta Agron Sin, 2006, 32: 1566-1572 (in Chinese with English abstract).
[36] 王一帆, 秦亚洲, 冯福学, 赵财, 于爱忠, 刘畅, 柴强. 根间作用与密度协同作用对小麦间作玉米产量及产量构成的影响. 作物学报, 2017, 43: 754-762.
Wang Y F, Qin Y Z, Feng F X, Zhao C, Yu A Z, Liu C, Chai Q. Synergistic effect of root interaction and density on yield and yield components of wheat/maize intercropping system. Acta Agron Sin, 2017, 43: 754-762 (in Chinese with English abstract).
[37] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699-1705 (in Chinese with English abstract).
[38] Xu K, Chai Q, Hu F, Fan Z, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.
doi: 10.1038/s41598-021-02345-5 pmid: 34819592
[39] 赵娜, 赵护兵, 鱼昌为, 曹群虎, 李敏, 曹卫东, 高亚军. 旱地豆科绿肥腐解及养分释放动态研究. 植物营养与肥料学报, 2011, 17: 1179-1187.
Zhao N, Zhao H B, Yu C W, Cao Q H, Li M, Cao W D, Gao Y J. Nutrient releases of leguminous green manures in rainfed lands. Plant Nutr Fert Sci, 2011, 17: 1179-1187 (in Chinese with English abstract).
[40] 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望. 中国生态农业学报, 2016, 24: 403-415.
Li L. Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chin J Eco-Agric, 2016, 24: 403-415 (in Chinese with English abstract).
[41] 耿川雄, 任家兵, 马心灵, 龙光强, 鲁耀, 汤利. 基于LCA的不同间作体系产量优势及温室效应研究. 中国生态农业学报, 2020, 28: 159-167.
Geng C X, Ren J B, Ma X L, Long G Q, Lu Y, Tang L. Yield improvement and greenhouse effect of different intercropping systems based on life cycle assessment. Chin J Eco-Agric, 2020, 28: 159-167 (in Chinese with English abstract).
[42] Chai Q, Nemecek T, Liang C, Zhao C, Yu A Z, Coulter J A, Wang Y F, Hu F L, Wang L, Siddique K H M, Gan Y T. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc Natl Acad Sci USA, 2021, 118: e2106382118.
[1] 尚永盼, 于爱忠, 王玉珑, 王鹏飞, 李悦, 柴健, 吕汉强, 杨学慧, 王凤. 绿洲灌区绿肥还田利用方式对玉米干物质积累、分配及产量的影响[J]. 作物学报, 2024, 50(3): 686-694.
[2] 袁晓婷, 王甜, 罗凯, 刘姗姗, 彭新月, 杨立达, 蒲甜, 王小春, 杨文钰, 雍太文. 带宽和株距对带状间作大豆物质积累分配及产量形成的影响[J]. 作物学报, 2024, 50(1): 161-171.
[3] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[4] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[5] 吴香奇, 刘博, 张威, 杨雪妮, 郭子艳, 刘铁宁, 张旭东, 韩清芳. 小麦豌豆间作对群体光合特性和生产力的影响[J]. 作物学报, 2023, 49(4): 1079-1089.
[6] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[7] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[8] 柴健, 于爱忠, 李悦, 王玉珑, 王凤, 王鹏飞, 吕汉强, 杨学慧, 尚永盼. 绿肥还田量结合氮肥减施对绿洲灌区小麦产量和氮素吸收利用的影响[J]. 作物学报, 2023, 49(11): 3131-3140.
[9] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响[J]. 作物学报, 2023, 49(11): 3090-3099.
[10] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 柴健, 李悦, 吕汉强, 尚永盼, 杨学慧. 麦后复种绿肥翻压还田结合减氮对土壤水热特性及玉米产量的影响[J]. 作物学报, 2023, 49(10): 2793-2805.
[11] 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365.
[12] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[13] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[14] 赵建华, 孙建好, 陈亮之, 李伟绮. 玉/豆间作产量优势中补偿效应和选择效应的角色[J]. 作物学报, 2022, 48(10): 2588-2596.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!