• •
高源**,王宇琦**,姜佳宁,赵健雄,王雪贺缘,王浩宇,张芮嘉,徐晶宇,贺琳*
GAO Yuan**, WANG Yu-Qi**, JIANG Jia-Ning, ZHAO Jian-Xiong, WANG Xue-He-Yuan, WANG Hao-Yu, ZHANG Rui-Jia, XU Jing-Yu,HE Lin*
摘要:
低温是限制东北地区玉米产量的主要逆境之一。膜NAC转录因子在植物抵御逆境过程中发挥着重要作用,探究其功能将为玉米耐低温育种提供一定的理论依据。本研究通过生物信息技术分析了9条玉米NTL基因的分子特性,利用已发表的玉米低温RNA-seq数据,发现6个成员在根和叶中同时受到低温诱导显著上调表达。选取蛋白同源性达到80.04%的ZmNTL1与ZmNTL5基因,采用基因敲除技术构建了该2条基因的双敲材料zmntl1zmntl5。在低温胁迫条件下,zmntl1zmntl5株系的叶片离子渗透率显著高于B104株系;而其地上部干重和鲜重、地下部干重和鲜重以及叶绿素含量均显著低于B104株系;zmntl1zmntl5株系的O2·?和H2O2含量显著高于B104对照株系,而GST、SOD、POD和CAT活性均显著低于B104株系。此外,低温胁迫下ZmGST24、ZmNCED3、ZmDREB1.6和ZmDREB2A基因在zmntl1zmntl5株系中的表达量较B104株系显著降低。综上所述,ZmNTL1与ZmNTL5的缺失降低了植物对低温的耐受性,表明二者是玉米低温耐受性的正调控因子。本研究为耐冷玉米品种改良和新品种培育提供了重要的理论基础和宝贵的遗传资源。
[1] Shikha K, Madhumal Thayil V, Shahi J P, Zaidi P H, Seetharam K, Nair S K, Singh R, Tosh G, Singamsetti A, Singh S, et al. Genomic-regions associated with cold stress tolerance in Asia-adapted tropical maize germplasm. Sci Rep, 2023, 13: 6297. [2] Ding Y L, Yang S H. Surviving and thriving: How plants perceive and respond to temperature stress. Dev Cell, 2022, 57: 947–958. [3] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496–1517. [4] Ding Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures. Mol Plant, 2020, 13: 544–564. [5] Li Z Y, Fu D Y, Wang X, Zeng R, Zhang X, Tian J G, Zhang S S, Yang X H, Tian F, Lai J S, et al. The transcription factor bZIP68 negatively regulates cold tolerance in maize. Plant Cell, 2022, 34: 2833–2851. [6] Jiang H F, Shi Y T, Liu J Y, Li Z, Fu D Y, Wu S F, Li M Z, Yang Z J, Shi Y L, Lai J S, et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat Plants, 2022, 8: 1176–1190. [7] Seo P J. Recent advances in plant membrane-bound transcription factor research: emphasis on intracellular movement. J Integr Plant Biol, 2014, 56: 334–342. [8] Yang Z T, Wang M J, Sun L, Lu S J, Bi D L, Sun L, Song Z T, Zhang S S, Zhou S F, Liu J X. The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet, 2014, 10: e1004243. [9] De Backer J, Van Breusegem F, De Clercq I. Proteolytic activation of plant membrane-bound transcription factors. Front Plant Sci, 2022, 13: 927746. [10] Li S, Wang N, Ji D D, Xue Z Y, Yu Y C, Jiang Y P, Liu J L, Liu Z H, Xiang F N. Evolutionary and functional analysis of membrane-bound NAC transcription factor genes in soybean. Plant Physiol, 2016, 172: 1804–1820. [11] Kim S G, Lee A K, Yoon H K, Park C M. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J, 2008, 55: 77–88. [12] Sakuraba Y, Kim Y S, Han S H, Lee B D, Paek N C. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell, 2015, 27: 1771–1787. [13] Sun H M, Xie Y Z, Yang W B, Lv Q, Chen L P, Li J T, Meng Y, Li L Q, Li X J. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2022, 182: 182–193. [14] Wu Z, Li T, Xiang J, Teng R D, Zhang D H, Teng N J. A lily membrane-associated NAC transcription factor LlNAC014 is involved in thermotolerance via activation of the DREB2-HSFA3 module. J Exp Bot, 2023, 74: 945–963. [15] Wang D X, Yu Y C, Liu Z H, Li S, Wang Z L, Xiang F N. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response. Plant Sci, 2016, 250: 30–39. [16] Qian Y X, Xi Y, Xia L X, Qiu Z L, Liu L, Ma H. Membrane-bound transcription factor ZmNAC074 positively regulates abiotic stress tolerance in transgenic Arabidopsis. Int J Mol Sci, 2023, 24: 16157. [17] Xi Y, Ling Q Q, Zhou Y, Liu X, Qian Y X. ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis. Front Plant Sci, 2022, 13: 986628. [18] Gu Y N, He L, Zhao C J, Wang F, Yan B W, Gao Y Q, Li Z T, Yang K J, Xu J Y. Biochemical and transcriptional regulation of membrane lipid metabolism in maize leaves under low temperature. Front Plant Sci, 2017, 8: 2053. [19] Zhao X C, Wei Y L, Zhang J J, Yang L, Liu X Y, Zhang H Y, Shao W J, He L, Li Z T, Zhang Y F, et al. Membrane lipids' metabolism and transcriptional regulation in maize roots under cold stress. Front Plant Sci, 2021, 12: 639132. [20] Liu X H, Lyu Y S, Yang W P, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J, 2020, 18: 1317–1329. [21] Zhao Y S, Antoniou-Kourounioti R L, Calder G, Dean C, Howard M. Temperature-dependent growth contributes to long-term cold sensing. Nature, 2020, 583: 825–829. [22] Seo P J, Kim M J, Park J Y, Kim S Y, Jeon J, Lee Y H, Kim J, Park C M. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis. Plant J, 2010, 61: 661–671. [23] Yang Z T, Fan S X, Wang J J, An Y, Guo Z Q, Li K, Liu J X. The plasma membrane-associated transcription factor NAC091 regulates unfolded protein response in Arabidopsis thaliana. Plant Sci, 2023, 334: 111777. [24] Shi Y T, Ding Y L, Yang S H. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23: 623–637. [25] Nguyen H T, Leipner J, Stamp P, Guerra-Peraza O. Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem, 2009, 47: 116–122. [26] Liu L, Tang C, Zhang Y, Sha X, Tian S, Luo Z, Wei G, Zhu L, Li Y, Fu J, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985–2003. [27] Song X P, Cao B Y, Xu Z P, Liang L, Xiao J C, Tang W, Xie M H, Wang D, Zhu L, Huang Z, et al. Molecular regulation by H2S of antioxidant and glucose metabolism in cold-sensitive Capsicum. BMC Plant Biol, 2024, 24: 931. |
[1] | 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675. |
[2] | 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513. |
[3] | 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581. |
[4] | 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617. |
[5] | 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628. |
[6] | 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388. |
[7] | 周科, 陈鹏飞. 耦合多源无人机遥感数据和机器学习方法的玉米SPAD估测[J]. 作物学报, 2025, 51(5): 1389-1399. |
[8] | 盛倩男, 方娅婷, 赵剑, 杜思垚, 胡行珍, 余秋华, 朱俊, 任涛, 鲁剑巍. 不同养分管理措施对稻田和旱地油菜产量的影响及其对冻害的响应[J]. 作物学报, 2025, 51(5): 1286-1298. |
[9] | 孟凡琦, 房孟颖, 罗艺, 卢霖, 董学瑞, 王亚菲, 郭丽娜, 闫鹏, 董志强, 张凤路. 乙烯利-甜菜碱-水杨酸合剂对夏玉米耐热性和产量的调控效应[J]. 作物学报, 2025, 51(5): 1299-1311. |
[10] | 李雪婷, 任昊, 王洪章, 张吉旺, 赵斌, 任佰朝, 刘莹, 姚海燕, 刘鹏. 盐胁迫对不同耐盐型玉米品种叶片光合性能和干物质积累与分配的影响[J]. 作物学报, 2025, 51(4): 1091-1101. |
[11] | 宋利, 刘广周, 张华, 卢庭启, 卿春燕, 杨云山, 郭晓霞, 胡单, 李少昆, 侯鹏. 密植滴灌水肥一体化对西南夏玉米产量及土壤细菌群落的影响[J]. 作物学报, 2025, 51(4): 992-1004. |
[12] | 方应浩, 周波, 陈茹梅, 杨文竹, 秦慧民. 基于RNA-seq和PER-seq联合分析探究ZmHDZ6表达调控网络[J]. 作物学报, 2025, 51(4): 958-968. |
[13] | 侯天钰, 杜孝敬, 赵志强, 热依木·艾尼瓦尔, 伊达耶图拉·阿不拉, 布哈丽且木·阿不力孜, 袁杰, 张燕红, 王奉斌. 粳稻品种芽期耐冷性评价及耐冷种质筛选[J]. 作物学报, 2025, 51(3): 812-822. |
[14] | 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770. |
[15] | 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712. |
|