欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2253-2265.doi: 10.3724/SP.J.1006.2025.53033

• 综述 •    下一篇

植物光合午休研究进展

高园1,2(), 李霞1, 魏少博1, 田小海2, 周文彬1,*()   

  1. 1中国农业科学院作物科学研究所, 北京 100081
    2长江大学农学院, 湖北荆州 434025
  • 收稿日期:2025-06-04 接受日期:2025-07-09 出版日期:2025-09-12 网络出版日期:2025-07-10
  • 通讯作者: *周文彬, E-mail: zhouwenbin@caas.cn
  • 作者简介:E-mail: yuangao1014@163.com
  • 基金资助:
    本研究由科技创新2030重大项目(2024ZD0408002)

Research advances on plant midday depression of photosynthesis

GAO Yuan1,2(), LI Xia1, WEI Shao-Bo1, TIAN Xiao-Hai2, ZHOU Wen-Bin1,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2025-06-04 Accepted:2025-07-09 Published:2025-09-12 Published online:2025-07-10
  • Contact: *E-mail: zhouwenbin@caas.cn
  • Supported by:
    Science and Technology Innovation 2030 Major Project(2024ZD0408002)

摘要:

光合午休是指植物在自然条件下, 在正午出现光合速率下降, 随后逐渐上升的现象。光合午休的发现至今已有百余年历史, 但其形成的确切机制尚不清楚。光合午休不仅影响植物光合生产力, 还对大田作物的产量形成具有重要影响。因此, 深入研究光合午休成因及其生理与分子机制, 对于提高大田作物光合效率、进而提升产量具有重要意义。本文系统回顾了光合午休的发现历程, 综述了环境因子对光合午休形成的影响及其相关生理机制, 并对未来研究进行了展望, 以期为深入研究光合午休及其调控机制提供参考和思路。

关键词: 光合午休, 光合作用, 生理机制, 环境因子, 作物

Abstract:

The midday depression of plant photosynthesis refers to the phenomenon that plants experience a decline in photosynthetic efficiency around noon under natural conditions, followed by a subsequent recovery. This phenomenon was first identified over a century ago, yet its underlying mechanisms remain unclear. It not only affects the plant photosynthetic productivity, but also plays an important role in the yield formation of field crops. Therefore, exploring the physiological and molecular mechanisms of photosynthetic midday depression is of great theoretical and practical importance for improving the crop photosynthetic efficiency and increasing yields. This review reviewed the discovery process of photosynthetic midday depression, the environmental factors affecting the formation of photosynthetic midday depression and the related physiological regulation mechanism. Additionally, we discussed and provided perspectives on the future research directions, aiming to offer insights and references for future studies in this field.

Key words: midday depression of photosynthesis, photosynthesis, physiological mechanism, environmental factor, crop

表1

具有光合午休现象的植物"

植物所属科
Families of plants
物种
Species
参考文献
Reference
禾本科Poaceae 大麦Hordeum vulgare [17]
小麦Triticum aestivum [8]
水稻Oryza sativa [5]
芦苇Phragmites australis [18]
豆科Fabaceae 大豆Glycine max [6]
菜豆Phaseolus vulgaris [19]
牧豆树Prosopis juliflora [20]
香豌豆Lathyrus Pratensis [21]
茄科Solanaceae 烟草Nicotiana tabacum [22]
马铃薯Solanum tuberosum [23]
辣椒Capsicum annuum [24]
番茄Solanum lycopersicum [25]
锦葵科Malvaceae 棉花Gossypium hirsutum [26]
藜科Chenopodiaceae 菠菜Spinacia oleracea [27]
菊科Asteraceae 蒲公英Taraxacum mongolicum [28]
葡萄Vitis vinifera [29]
莴苣Lactuca sativa [30]
向日葵Helianthus annuus [2]
蔷薇科Rosaceae 草莓Fragaria × ananassa [31]
油桃Prunus persica [32]
皇冠梨Pyrus bretschneideri [33]
扁桃Prunus dulcis [34]
苹果Malus pumila [35]
欧洲甜樱桃Prunus avium [36]
桃树Prunus persica [37]
凤梨科Bromeliaceae 凤梨Ananas comosus [38]
兰科Orchidaceae 蕙兰Cymbidium faberi [39]
文心兰Oncidium luridum [40]
百合科Liliaceae 百合Lilium rosthornii [41]
杨梅科Myricaceae 杨梅Morella rubra [42]
芸香科Rutaceae 柑橘Citrus unshiu [13]
葡萄柚Citrus paradisi [43]
杨柳科Salicaceae 美洲黑杨Populus deltoides [44]
漆树科Anacardiaceae 芒果Mangifera indica [45]
杜鹃花科Ericaceae 蔓越莓Vaccinium macrocarpon [46]
茜草科Rubiaceae 咖啡Coffea arabica [47]
山茶科Theaceae 油茶Camellia oleifera [48]
大戟科Euphorbiaceae 木薯Manihot esculenta [16]
锥形血桐Macaranga conifera [49]
天门冬科Asparagaceae 玉簪Hosta plantaginea [50]
壳斗科Fagaceae 土耳其栎Quercus cerris [51]
石竹科Caryophyllaceae 太子参Pseudostellaria heterophylla [52]

图1

2023年北京田间种植水稻、小麦和玉米的光合日变化 A: 净光合速率; B: 气孔导度。采用LICOR-6400XT测定光合作用相关参数, 其中水稻和玉米的测定时间为8月5日, 小麦的测定时间为5月9日。"

图2

2023年8月5日北京气象条件的日变化 A: 光照辐射(PPFD); B: 空气温度; C: 空气湿度; D: 饱和水汽压差(VPD)。"

[1] 许大全. 光合作用“午睡”现象的生态、生理与生化. 植物生理学通讯, 1990, 26(6): 5-10.
Xu D Q. Ecology, physiology and biochemistry of midday depression of photosynthesis. Plant Physiol Commun, 1990, 26(6): 5-10 (in Chinese with English abstract).
[2] Thoday D. Experimental researches on vegetable assimilation and respiration: VI. Some experiments on assimilation in the open air. Proc R Soc Lond B, 1910, 82: 421-450.
[3] Kumagai E, Araki T, Ueno O. Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars. Photosynthetica, 2009, 47: 241-246.
[4] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H, Yang J C. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci, 2017, 8: 1082.
doi: 10.3389/fpls.2017.01082 pmid: 28676818
[5] Miao Y X, Cai Y, Wu H, Wang D. Diurnal and seasonal variations in the photosynthetic characteristics and the gas exchange simulations of two rice cultivars grown at ambient and elevated CO2. Front Plant Sci, 2021, 12: 651606.
[6] Huang L F, Zheng J H, Zhang Y Y, Hu W H, Mao W H, Zhou Y H, Yu J Q. Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: the cause for midday depression in CO2 assimilation. Sci Hortic, 2006, 110: 214-218.
[7] 徐江, 朱建雯, 张巨松, 周抑强. 田间棉花叶片呼吸作用对光合日变化的影响. 新疆农业大学学报, 1997, 20(4): 1-4.
Xu J, Zhu J W, Zhang J S, Zhou Y Q. Effect of respiration of cotton leaves in the field on diurnal course of photosynthesis. J Xinjiang Agric Univ, 1997, 20(4): 1-4 (in Chinese with English abstract).
[8] 娄长安, 莫庸, 王荣栋, 张煜星. 新疆大陆性气候春小麦“午睡”现象的研究: II. 田间生态因子与“午睡”的关系. 石河子大学学报(自然科学版), 1996, 14(2): 5-10.
Lou C A, Mo Y, Wang R D, Zhang Y X. A study on the midday depression of the spring wheat in the continental climate of Xinjiang: II. Relationships between ecological factors and midday depression of photosynthetic rate in wheat leaves under field conditions. J Shihezi Univ (Nat Sci), 1996, 14(2): 5-10 (in Chinese).
[9] 白岚方, 路战远, 张向前, 贾凯, 王玉芬, 孙鸿举. 不同玉米品种灌浆期穗位叶光合特性日变化及青贮产量差异研究. 河南农业科学, 2020, 49(4): 29-37.
Bai L F, Lu Z Y, Zhang X Q, Jia K, Wang Y F, Sun H J. Diurnal variation of photosynthetic characteristics of panicle position leaf during filling period and difference of silage yield of different maize varieties. J Henan Agric Sci, 2020, 49(4): 29-37 (in Chinese with English abstract).
[10] Verma K K, Wu K C, Verma C L, Li D M, Malviya M K, Singh R K, Singh P, Chen G L, Song X P, Li Y R. Developing mathematical model for diurnal dynamics of photosynthesis in Saccharum officinarum responsive to different irrigation and silicon application. PeerJ, 2020, 8: e10154.
[11] Al-Salman Y, Ghannoum O, Cano F J. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. Plant J, 2023, 115: 1661-1676.
[12] Iio A, Fukasawa H, Nose Y, Kakubari Y. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan. Trees, 2004, 18: 510-517.
[13] Hu M J, Guo Y P, Shen Y G, Guo D P, Li D Y. Midday depression of photosynthesis and effects of mist spray in Citrus. Ann Appl Biol, 2009, 154: 143-155.
[14] Tanizaki T, Yokoyama G, Kitano M, Yasutake D. Contribution of diffusional and non-diffusional limitations to the midday depression of photosynthesis which varies dynamically even under constant environmental conditions. Int Agrophys, 2022, 36: 207-212.
[15] 许大全, 李德耀, 沈允钢, 阎继耀, 张原根, 郑友三. 田间小麦叶片光合作用“午睡”现象的研究: Ⅱ. 喷雾对小麦光合作用与籽粒产量的影响. 作物学报, 1987, 13: 111-115.
Xu D Q, Li D Y, Shen Y G, Yan J Y, Zhang Y G, Zheng Y S. On the midday depression of photosynthesis of wheat leaf under field conditions: II. The effects spraying water on the photosynthetic rate and the grain yield of wheat. Acta Agron Sin, 1987, 13: 111-115 (in Chinese with English abstract).
[16] Cock J H, Porto M C M, El-Sharkawy M A. Water use efficiency of cassava: III. Influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci, 1985, 25: 265-272.
[17] Murata Y, Iyama J. Studies on the photosynthesis of forage crops: 1. Diurnal changes in the photosynthesis of several grasses and barley seedlings under constant temperature and light intensity. Jpn J Crop Sci, 1963, 31: 311-314.
[18] Barta C, Loreto F. The relationship between the methyl-erythritol phosphate pathway leading to emission of volatile isoprenoids and abscisic acid content in leaves. Plant Physiol, 2006, 141: 1676-1683.
pmid: 16766667
[19] 卢育华, 刘金龙, 李炳华, 李志英, 徐立. 菜豆光合特性研究. 山东农业大学学报(自然科学版), 1998, 29: 165-170.
Lu Y H, Liu J L, Li B H, Li Z Y, Xu L. Studies on the photosynthetic characteristic of bean. J Shandong Agric Univ (Nat Sci Edn), 1998, 29: 165-170 (in Chinese with English abstract).
[20] Shirke P A, Pathre U V. Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 2003, 41: 83-89.
[21] 高景慧, 张越利, 许浩然, 曹社会. 栽培型多年生香豌豆不同生育期的光合日动态. 草地学报, 2011, 19: 438-442.
doi: 10.11733/j.issn.1007-0435.2011.03.013
Gao J H, Zhang Y L, Xu H R, Cao S H. Diurnal dynamics of photosynthesis characteristics in cultivated Lathyrus pratensis L. Acta Agrest Sin, 2011, 19: 438-442 (in Chinese with English abstract).
[22] MacDowall F D H. Midday closure of stomata in aging tobacco leaves. Can J Bot, 1963, 41: 1289-1300.
[23] Yokoyama G, Yasutake D, Tanizaki T, Kitano M. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica, 2019, 57: 740-747.
doi: 10.32615/ps.2019.088
[24] 程云霞, 吴慧, 张婧, 申金秀, 俞安炜, 贾凯, 刘迁杰, 时振宇. 不同浓度营养液对袋式复合沙培辣椒光合日变化及产量的影响. 分子植物育种, 2022, 20: 1989-1995.
Cheng Y X, Wu H, Zhang J, Shen J X, Yu A W, Jia K, Liu Q J, Shi Z Y. Effects of different nutrient solution concentrations on the diurnal changes of photosynthesis of pepper in bag sand culture. Mol Plant Breed, 2022, 20: 1989-1995 (in Chinese with English abstract).
[25] Yokoyama G, Yasutake D, Kitano M. A preliminary experiment on the effects of leaf wetting on gas exchange in tomato leaves. Environ Control Biol, 2018, 56: 13-16.
[26] 张旺锋, 任丽彤, 王振林, 李少昆, 勾玲, 余松烈, 曹连莆. 膜下滴灌对新疆高产棉花光合特性日变化的影响. 中国农业科学, 2003, 36: 159-163.
Zhang W F, Ren L T, Wang Z L, Li S K, Gou L, Yu S L, Cao L P. Effect of different norms of under-mulch-drip irrigation on diurnal changes of photosynthesis and chlorophyll fluorescence parameter of high-yielding cotton in Xinjiang. Sci Agric Sin, 2003, 36: 159-163 (in Chinese with English abstract).
[27] 田春洲, 田国政. 不同施氮素水平对菠菜光合日变化影响. 现代园艺, 2013, (8): 11-12.
Tian C Z, Tian G Z. Effect of different nitrogen application levels on diurnal variation of Spinach oleracea photosynthesis. Xiandai Hortic, 2013, (8): 11-12 (in Chinese).
[28] 肖智勇, 郭圣茂, 赵治国. 三种菊科药用植物光合特性的初步研究. 山东林业科技, 2009, 39(6): 14-18.
Xiao Z Y, Guo S M, Zhao Z G. Preliminary studies on three compositae medicinal plants photosynthetic characteristics. J Shandong For Sci Technol, 2009, 39(6): 14-18 (in Chinese with English abstract).
[29] Quick W P, Chaves M M, Wendler R, David M, Rodrigues M L, Passaharinho J A, Pereira J S, Adcock M D, Leegood R C, Stitt M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ, 1992, 15: 25-35.
[30] 李萍萍, 胡永光, 赵玉国, 毛罕平. 叶用莴苣温室栽培单株光合作用日变化规律. 园艺学报, 2001, 28: 240-245.
Li P P, Hu Y G, Zhao Y G, Mao H P. A study on daily variation of photosynthesis in greenhouse butterhead lettuce. Acta Hortic Sin, 2001, 28: 240-245 (in Chinese with English abstract).
[31] 王红宁, 林琭, 汤昀, 李永平, 孙俊宝, 张生智, 吴晓璇. 沼液营养液对基质栽培草莓叶片气体交换日变化的影响. 河北农业大学学报, 2019, 42(6): 57-64.
doi: 10.13320/j.cnki.jauh.2019.0122
Wang H N, Lin L, Tang Y, Li Y P, Sun J B, Zhang S Z, Wu X X. Effects of nutrient solution based on biogas slurry on diurnal change leaf gas exchange of strawberry in soilless cultivation. J Hebei Agric Univ, 2019, 42(6): 57-64 (in Chinese with English abstract).
[32] Osório M L, Breia E, Rodrigues A, Osório J, Le Roux X, Daudet F A, Ferreira I, Chaves M M. Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ Exp Bot, 2006, 55: 235-247.
[33] 张晓峰, 韩翔, 张建光. 不同土壤水分含量对黄冠梨叶片光合效率和抗氧化特性的影响. 北方园艺, 2013, (10): 7-11.
Zhang X F, Han X, Zhang J G. Effect of different soil moisture contents on net photosynthetic rate and antioxidant abilities in Huangguan pear leaves. North Hortic, 2013, (10): 7-11 (in Chinese with English abstract).
[34] Romero P, Botía P. Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almond trees under semiarid conditions. Environ Exp Bot, 2006, 56: 158-173.
[35] 高照全, 李天红, 张显川. 苹果叶片气体交换日变化动态模拟. 生态学报, 2010, 30: 1258-1264.
Gao Z Q, Li T H, Zhang X C. The dynamic diurnal simulation of gas exchange in apple leaves. Acta Ecol Sin, 2010, 30: 1258-1264 (in Chinese with English abstract).
[36] Chen M H, Feng S, Gao M Y, Liu M, Wang K B, Wang J, Shangguan Z P, Zhang Y W. The difference in the photosynthetic characteristics and soil moisture of different varieties of sweet cherry (Prunus avium L.). Agric Water Manag, 2024, 302: 109002.
[37] Correia M J, Rodrigues M L, Ferreira M I, Pereira J S. Diurnal change in the relationship between stomatal conductance and abscisic acid in the xylem sap of field-grown peach trees. J Exp Bot, 1997, 48: 1727-1736.
[38] 李永秀, 孙敏, 丁鹏, 谢博文. 观赏凤梨光合特性的研究. 中国农学通报, 2010, 26(4): 219-223.
Li Y X, Sun M, Ding P, Xie B W. Study on photosynthesis characteristics of Guzmania. Chin Agric Sci Bull, 2010, 26(4): 219-223 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-1993
[39] Song J Y, Zhang N. The photosynthetic characteristics of wild Cymbidium faberi rolfe in the Qinling mountains, China. Bangl J Bot, 2018, 47: 805-813.
[40] Chang Y C, Chen H W, Lee N. (137) High temperature increases the midday depression of net photosynthesis in Oncidium gower ramsey. Hortic Sci, 2006, 41: 1056D-1057D.
[41] Wang L J, Cao Q Z, Zhang X Q, Jia G X. Effects of polyploidization on photosynthetic characteristics in three Lilium species. Sci Hortic, 2021, 284: 110098.
[42] Guo W D, Guo Y P, Liu J R, Mattson N. Midday depression of photosynthesis is related with carboxylation efficiency decrease and D1 degradation in bayberry (Myrica rubra) plants. Sci Hortic, 2009, 123: 188-196.
[43] Jifon J L, Syvertsen J P. Moderate shade can increase net gas exchange and reduce photoinhibition in Citrus leaves. Tree Physiol, 2003, 23: 119-127.
pmid: 12533306
[44] Pathre U, Sinha A K, Shirke P A, Sane P V. Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees, 1998, 12: 472-481.
[45] Chamchaiyaporn T, Jutamanee K, Kasemsap P, Vaithanomsat P, Henpitak C. Effects of kaolin clay coating on mango leaf gas exchange, fruit yield and quality. Agric Nat Resour, 2013, 47: 479-491.
[46] Kumudini S. Effect of radiation and temperature on cranberry photosynthesis and characterization of diurnal change in photosynthesis. J Am Soc Hort Sci, 2004, 129: 106-111.
[47] Gomez L F, López J C, Riano N M, Lopez Y, Montoya E C. Diurnal changes in leaf gas exchange and validation of a mathematical model for coffee (Coffea arabica L.) canopy photosynthesis. Photosynthetica, 2005, 43: 575-582.
[48] Zhang J S, Zhang L Y, Wang Q, Liu J L, Sun Y J. Diurnal regulation of leaf photosynthesis is related to leaf-age-dependent changes in assimilate accumulation in Camellia oleifera. Plants, 2023, 12: 2161.
[49] Ishida A, Toma T, Marjenah M. Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. Tree Physiol, 1999, 19: 467-473.
[50] Zhang J Z, Shi L, Shi A P, Zhang Q X. Photosynthetic responses of four Hosta cultivars to shade treatments. Photosynthetica, 2004, 42: 213-218.
[51] Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ, 1995, 18: 631-640.
[52] Ma Y L, Wang T, Xie Y F, Lyu Q, Qiu L L. Alleviatory effect of rare earth micro-fertilizer on photosystem II (PSII) photoinhibition in Pseudostellaria heterophylla leaves at photosynthetic midday depression. J Rare Earths, 2022, 40: 1156-1164.
[53] Pons T L, Welschen R A M. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol, 2003, 23: 937-947.
[54] Wimalasekera R. Effect of light intensity on photosynthesis. In: Ahmad P, Ahanger M A, Alyemeni N, Alam P, eds. Photosynthesis, Productivity and Environmental Stress. Springer Netherlands, 2019. pp 65-73.
[55] Park Y I, Chow W S, Anderson J M. Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol, 1996, 111: 867-875.
pmid: 12226333
[56] Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature, 2002, 420: 829-832.
[57] Wada M, Kagawa T, Sato Y. Chloroplast movement. Annu Rev Plant Biol, 2003, 54: 455-468.
pmid: 14502999
[58] Maai E, Nishimura K, Takisawa R, Nakazaki T. Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod Sci, 2020, 23: 172-181.
doi: 10.1080/1343943X.2019.1673666
[59] Liu Y J, Zhang W, Wang Z B, Ma L, Guo Y P, Ren X L, Mei L X. Influence of shading on photosynthesis and antioxidative activities of enzymes in apple trees. Photosynthetica, 2019, 57: 857-865.
doi: 10.32615/ps.2019.081
[60] Correia M J, Chaves M M C, Pereira J S. Afternoon depression in photosynthesis in grapevine leaves: evidence for a high light stress effect. J Exp Bot, 1990, 41: 417-426.
[61] Moore C E, Meacham-Hensold K, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson T, Cavanagh A P. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot, 2021, 72: 2822-2844.
doi: 10.1093/jxb/erab090 pmid: 33619527
[62] Diao H Y, Cernusak L A, Saurer M, Gessler A, Siegwolf R T W, Lehmann M M. Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques. New Phytol, 2024, 241: 2366-2378.
doi: 10.1111/nph.19558 pmid: 38303410
[63] Tschesnokov V, Bazyrina K. Die begrenzenden faktoren bei der Photosynthese. Planta, 1930, 11: 457-462.
[64] 吴艳洪, 李海霞, 董红霞, 曾汉来. 水稻光合能力的高温稳定性评价指标与遗传分析. 华中农业大学学报, 2011, 30(1): 8-12.
Wu Y H, Li H X, Dong H X, Zeng H L. Genetic analysis and evaluation indexes for high temperature stability of photosynthesis in rice. J Huazhong Agric Univ, 2011, 30(1): 8-12 (in Chinese with English abstract).
[65] 蒋德安, 徐银发. 水稻光合速率、气孔导度和Rubisco活力的日变化. 植物生理学报, 1996, 22: 94-100.
Jiang D A, Xu Y F. Diurnal changes of photosynthetic rate, stomatal conductance and Rubisco in rice leaf. Acta Phytophy Siol Sin, 1996, 22: 94-100 (in Chinese with English abstract).
[66] Loreto F, Sharkey T D. Low humidity can cause uneven photosynthesis in olive (Olea europea L.) leaves. Tree Physiol, 1990, 6: 409-415.
pmid: 14972932
[67] Amin B, Atif M J, Wang X, Meng H, Ghani M I, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. Plant Biol, 2021, 23: 785-796.
[68] Chabane F, Moummia N, Brima A. Forecast of relationship between a relative humidity and a dew point temperature. J Power Technol, 2018, 98: 183-187.
[69] Weber J A, Gates D M. Gas exchange in Quercus rubra (northern red oak) during a drought: analysis of relations among photosynthesis, transpiration, and leaf conductance. Tree Physiol, 1990, 7: 215-225.
pmid: 14972919
[70] Heath O V S. Studies in stomatal behaviour: V. The role of carbon dioxide in the light response of stomata. J Exp Bot, 1950, 1: 29-62.
[71] Schulze E D, Lange O L, Evenari M, Kappen L, Buschbom U. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions: I. A simulation of the daily course of stomatal resistance. Oecologia, 1974, 17: 159-170.
doi: 10.1007/BF00346278 pmid: 28309023
[72] Schulze E D, Lange O L, Evenari M, Kappen L, Buschbom U. Long-term effects of drought on wild and cultivated plants in the Negev desert: II. Diurnal patterns of net photosynthesis and daily carbon gain. Oecologia, 1980, 45: 19-25.
doi: 10.1007/BF00346701 pmid: 28310931
[73] Bunce J A. Effects of humidity on photosynthesis. J Exp Bot, 1984, 35: 1245-1251.
[74] Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 2004, 6: 269-279.
[75] Will R E, Wilson S M, Zou C B, Hennessey T C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol, 2013, 200: 366-374.
doi: 10.1111/nph.12321 pmid: 23718199
[76] 宁梓妤, 徐宪立, 杨东, 徐超昊, 李学章, 李振炜. 中国西南地区饱和水汽压差的年际变化及其影响因素. 农业现代化研究, 2022, 43: 172-179.
Ning Z Y, Xu X L, Yang D, Xu C H, Li X Z, Li Z W. Temporal variation of vapor pressure deficit and its influencing factors in southwest China. Res Agric Mod, 2022, 43: 172-179 (in Chinese with English abstract).
[77] Medina C L, Souza R P, Machado E C, Ribeiro R V, Silva J A B. Photosynthetic response of Citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic, 2002, 96: 115-125.
[78] Schulze E D, Hall A E. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of Plant Physiology: Lange O L, Nobel P S, Osmond C B, Ziegler H, eds. Physiological Plant Ecology II. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982. pp 181-230.
[79] Roessler P G, Monson R K. Midday depression in net photosynthesis and stomatal conductance in Yucca glauca: relative contributions of leaf temperature and leaf-to-air water vapor concentration difference. Oecologia, 1985, 67: 380-387.
doi: 10.1007/BF00384944 pmid: 28311572
[80] Novick K A, Miniat C F, Vose J M. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Plant Cell Environ, 2016, 39: 583-596.
[81] Li X, Ryu Y, Xiao J F, Dechant B, Liu J G, Li B L, Jeong S, Gentine P. New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci Adv, 2023, 9: eadi0775.
[82] 郑国生, 邹琦, 赵世杰. 田间大豆群体光合午休及喷灌效应. 华北农学报, 1994, 9(1): 44-47.
doi: 10.3321/j.issn:1000-7091.1994.01.009
Zheng G S, Zou Q, Zhao S J. Inhibiting photosynthetic midday depression of field-grown soybean by spray irrigation. Acta Agric Boreali-Sin, 1994, 9(1): 44-47 (in Chinese with English abstract).
doi: 10.3321/j.issn:1000-7091.1994.01.009
[83] Li Z H, Jiang E S, Liu M H, Sun Q H, Gao Z, Du Y P. Effects of coverlys TF150® on the photosynthetic characteristics of grape. Int J Mol Sci, 2023, 24: 16659.
[84] 邓仲篪, 陈翠莲. 水稻光合作用“午睡”现象的初探. 华中农业大学学报, 1989, 8(3): 208-212.
Deng Z C, Chen C L. Preliminary studies on afternoon-nap in rice photosynthesis. J Huazhong Agric Univ, 1989, 8(3): 208-212 (in Chinese with English abstract).
[85] Xu D Q, Wu S. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica, 1996, 32: 417-423.
[86] Kostytschew S, Kudriavzewa M, Moissejewa W, Smirnowa M. Der tägliche Verlauf der Photosynthese Bei Landpflanzen. Berlin Heidelberg: Springer, 1926. pp 679-699 (in German).
[87] Brodribb T J, Sussmilch F, McAdam S A M. From reproduction to production, stomata are the master regulators. Plant J, 2020, 101: 756-767.
doi: 10.1111/tpj.14561
[88] Tenhunen J D, Lange O L, Braun M. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber: II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia, 1981, 50: 5-11.
doi: 10.1007/BF00378788 pmid: 28310056
[89] Maskell E J. Experimental researches on vegetable assimilation and respiration: XVIII. —the relation between stomatal opening and assimilation. —a critical study of assimilation rates and porometer rates in leaves of Cherry Laurel. Proc R Soc Lond B, 1928, 102: 488-533.
[90] Lawson T, von Caemmerer S, Baroli I. Photosynthesis and stomatal behaviour. In: Lüttge U, Beyschlag W, Büdel B, Francis D, eds. Progress in Botany. Berlin, Heidelberg: Springer, 2011. pp 265-304.
[91] Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra A S. Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol, 2018, 1081: 215-232.
doi: 10.1007/978-981-13-1244-1_12 pmid: 30288712
[92] Kollist H, Zandalinas S I, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci, 2019, 24: 25-37.
doi: S1360-1385(18)30232-2 pmid: 30401516
[93] Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, et al. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci, 2020, 63: 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404
[94] Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681.
[95] Pardo-Hernández M, López-Delacalle M, Rivero R M. ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants, 2020, 9: 1078.
[96] Hsu P K, Dubeaux G, Takahashi Y, Schroeder J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J, 2021, 105: 307-321.
[97] Liu H, Song S B, Zhang H, Li Y H, Niu L J, Zhang J H, Wang W. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int J Mol Sci, 2022, 23: 14824.
[98] Loveys B R. Diurnal changes in water relations and abscisic acid in field grown Vitis vinifera cultivars: III. The influence of xylem-derived abscisic acid on leaf gas exchange. New Phytol, 1984, 98: 563-573.
[99] Yu J Q, Huang L F, Hu W H, Zhou Y H, Mao W H, Ye S F, Nogués S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot, 2004, 55: 1135-1143.
[100] Hu W H, Yan X H, Xiao Y A, Zeng J J, Qi H J, Ogweno J O. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic, 2013, 150: 232-237.
[101] Lima J V, Lobato A K S. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants, 2017, 23: 59-72.
[102] Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol, 2005, 138: 2337-2343.
doi: 10.1104/pp.105.063503 pmid: 16024687
[103] Song X G, She X P, He J M, Huang C, Song T S. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct Plant Biol, 2006, 33: 573-583.
[104] Lohse G, Hedrich R. Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells: modulation by extracellular factors and seasonal changes. Planta, 1992, 188: 206-214.
doi: 10.1007/BF00216815 pmid: 24178256
[105] Shi H T, Chen L, Ye T T, Liu X D, Ding K J, Chan Z L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem, 2014, 82: 209-217.
[106] Dodd A N, Kusakina J, Hall A, Gould P D, Hanaoka M. The circadian regulation of photosynthesis. Photosynth Res, 2014, 119: 181-190.
[107] Steed G, Ramirez D C, Hannah M A, Webb A A R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science, 2021, 372: eabc9141.
[108] Xu X D, Yuan L, Yang X, Zhang X, Wang L, Xie Q G. Circadian clock in plants: Linking timing to fitness. J Integr Plant Biol, 2022, 64: 792-811.
doi: 10.1111/jipb.13230
[109] Pruneda-Paz J L, Kay S A. An expanding universe of circadian networks in higher plants. Trends Plant Sci, 2010, 15: 259-265.
doi: 10.1016/j.tplants.2010.03.003 pmid: 20382065
[110] Kusakina J, Dodd A N. Phosphorylation in the plant circadian system. Trends Plant Sci, 2012, 17: 575-583.
doi: 10.1016/j.tplants.2012.06.008 pmid: 22784827
[111] Resco de Dios V, Gessler A. Circadian regulation of photosynthesis and transpiration from genes to ecosystems. Environ Exp Bot, 2018, 152: 37-48.
[112] 邓仲篪. 水稻光合日变化与内生节奏的关系. 中国水稻科学, 1994, 8(1): 9-14.
Deng Z C. The relation between daily changes of photosynthesis and internal rhythm in rice. Chin J Rice Sci, 1994, 8(1): 9-14 (in Chinese with English abstract).
[113] Chaumont M, Osório M L, Chaves M M, Vanacker H, Morot-Gaudry J F, Foyer C H. The absence of photoinhibition during the mid-morning depression of photosynthesis in Vitis vinifera grown in semi-arid and temperate climates. J Plant Physiol, 1997, 150: 743-751.
[114] Sun Z Z, Wang X, Song Y L, Li Q, Song J, Cai J, Zhou Q, Zhong Y X, Jin S C, Jiang D. StomataTracker: revealing circadian rhythms of wheat stomata with in-situ video and deep learning. Comput Electron Agric, 2023, 212: 108120.
[115] Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol, 2008, 9: R130.
[116] Seung D, Risopatron J P M, Jones B J, Marc J. Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 2012, 249: 445-457.
doi: 10.1007/s00709-011-0304-3 pmid: 21773710
[117] Dubois M, Claeys H, Van den Broeck L, Inzé D. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ, 2017, 40: 180-189.
[118] Yari Kamrani Y, Shomali A, Aliniaeifard S, Lastochkina O, Moosavi-Nezhad M, Hajinajaf N, Talar U. Regulatory role of circadian clocks on ABA production and signaling, stomatal responses, and wateruse efficiency under water-deficit conditions. Cells, 2022, 11: 1154.
[119] Adams S, Grundy J, Veflingstad S R, Dyer N P, Hannah M A, Ott S, Carré I A. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytol, 2018, 220: 893-907.
doi: 10.1111/nph.15415 pmid: 30191576
[120] Baek D, Kim W Y, Cha J Y, Park H J, Shin G, Park J, Lim C J, Chun H J, Li N, Kim D H, et al. The GIGANTEA-ENHANCED EM LEVEL complex enhances drought tolerance via regulation of abscisic acid synthesis. Plant Physiol, 2020, 184: 443-458.
doi: 10.1104/pp.20.00779 pmid: 32690755
[121] Nassoury N, Fritz L, Morse D. Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell, 2001, 13: 923-934.
pmid: 11283345
[122] García-Plazaola J I, Fernández-Marín B, Ferrio J P, Alday J G, Hoch G, Landais D, Milcu A, Tissue D T, Voltas J, Gessler A, et al. Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant Cell Environ, 2017, 40: 1153-1162.
[123] Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green R M. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiol, 2017, 175: 1864-1877.
doi: 10.1104/pp.17.01214 pmid: 29084902
[124] Muraoka H, Tang Y H, Terashima I, Koizumi H, Washitani I. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ, 2000, 23: 235-250.
[125] Barber J, Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 1992, 17: 61-66.
pmid: 1566330
[126] Tenhunen J D, Pearcy R W, Lange O L. Diurnal variations in leaf conductance and gas exchange in natural environments. In: Zeiger E, Farquhar G D, Cowan I R, eds. Stomatal Function. Stanford: Stanford University Press, 1987. pp 323-351.
[127] 张大鹏, 黄丛林, 王学臣, 娄成后. 葡萄叶片光合速率与量子效率日变化的研究及利用. 植物学报, 1995, 37(1): 25-33.
Zhang D P, Huang C L, Wang X C, Lou C H. Study of diurnal changes in photosynthetic rate and quantum efficiency of grapevine leaves and their utilization in canopy management. Acta Bot Sin, 1995, 37(1): 25-33 (in Chinese with English abstract).
[128] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant physiol Plant Mol Biol, 1991, 42: 313-349.
[129] Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321-330.
[130] 许大全. 回忆光合作用研究五十年. 植物生理学报, 2016, 52: 1593-1608.
Xu D Q. Memories of photosynthesis research for fifty years. Plant Physiol J, 2016, 52: 1593-1608 (in Chinese with English abstract).
[131] Krause G H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant, 1988, 74: 566-574.
[132] Prakash J S, Srivastava A, Strasser R J, Mohanty P. Senescence-induced alterations in the photosystem II functions of Cucumis sativus cotyledons: probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-I-P transients. Indian J Biochem Biophys, 2003, 40: 160-168.
[133] Debabrata P. Diurnal variations in gas exchange and chlorophyll fluorescence in rice leaves: the cause for midday depression in CO2 photosynthetic rate. J Stress Physiol Biochem, 2011, 7: 175-186.
[134] Trivedi P K, Reddy M S S, Sane P V. Plastid gene expression is not associated with midday depression in CO2 assimilation and electron transport. Plant Sci, 2000, 155: 187-192.
pmid: 10814822
[135] Zhang S R, Gao R F. Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica, 2000, 37: 559-571.
[136] Jahns P, Holzwarth A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta (BBA) Bioenerg, 2012, 1817: 182-193.
[137] Li X, Wang P, Li J, Wei S B, Yan Y Y, Yang J, Zhao M, Langdale J A, Zhou W B. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun Biol, 2020, 3: 151.
[138] Osmond C B. Photorespiration and photoinhibition: Some implications for the energetics of photosynthesis. Biochim Biophys Acta (BBA) Rev Bioenerg, 1981, 639: 77-98.
[139] South P F, Cavanagh A P, Liu H W, Ort D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363: eaat9077.
[140] Westgeest A J, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. Plant Cell, 2023, 35: 3444-3469.
[141] Chanishvili S S, Badridze G S, Barblishvili T F, Dolidze M D. Defoliation, photosynthetic rates, and assimilate transport in grapevine plants. Russ J Plant Physiol, 2005, 52: 448-453.
[142] Bläsing O E, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W R, Stitt M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell, 2005, 17: 3257-3281.
doi: 10.1105/tpc.105.035261 pmid: 16299223
[143] Lewis F J. Photosynthesis and related processes. Nature, 1945, 156: 487-488.
[144] 许大全, 丁勇, 武海. 田间小麦叶片光合效率日变化与光合“午睡”的关系. 植物生理学报, 1992, 18: 279-284.
Xu D Q, Ding Y, Wu H. Relationship between diurnal variations of photosynthetic efficiency and midday depression of photosynthetic rate in wheat leaves under field conditions. Acta Phytophy Siol Sin, 1992, 18: 279-284 (in Chinese with English abstract).
[145] Hodges J D. Patterns of photosynthesis under natural environmental conditions. Ecology, 1967, 48: 234-242.
[146] Zhou Y H, Lam H M, Zhang J H. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot, 2007, 58: 1207-1217.
doi: 10.1093/jxb/erl291 pmid: 17283375
[147] Cui L L, Lu Y S, Li Y, Yang C W, Peng X X. Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci, 2016, 7: 1165.
doi: 10.3389/fpls.2016.01165 pmid: 27540387
[148] Zhou J F, Jiang X D, Agathokleous E, Lu X J, Yang Z Q, Li R Y. High temperature inhibits photosynthesis of chrysanthemum (Chrysanthemum morifolium Ramat.) seedlings more than relative humidity. Front Plant Sci, 2023, 14: 1272013.
[149] Guo Q Q, Li X, Niu L, Jameson P E, Zhou W B. Transcription- associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiol, 2021, 186: 677-695.
[1] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[2] 闫知兰, 赵芹, 常甜达, 王一鸣, 王碧辉, 王鹏, 黄春国, 张会, 王利祥, 郝晓鹏, 赵波. 豆科作物AOX基因鉴定及其在普通菜豆响应非生物胁迫中的表达模式研究[J]. 作物学报, 2025, 51(7): 1769-1783.
[3] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[4] 刘春燕, 张利影, 周杰, 许依, 杨亚东, 曾昭海, 臧华栋. 豆科作物轮作强化农田生态系统功能的研究进展[J]. 作物学报, 2024, 50(8): 1885-1895.
[5] 曹馨元, 杜明利, 王宇诚, 陈欣华, 陈佳欣, 凌霄霞, 黄见良, 彭少兵, 邓南燕. 稻油系统周年产量差及形成因素探究: 以湖北省武穴市为例[J]. 作物学报, 2024, 50(5): 1287-1299.
[6] 王宇, 郜耿东, 葛萌萌, 常影, 谭静, 葛贤宏, 王晶, 汪波, 周广生, 傅廷栋. 钙在作物生长发育中的功能及应用[J]. 作物学报, 2024, 50(4): 793-807.
[7] 郝佳乐, 赵炯超, 赵明宇, 王艺璇, 逯杰, 石晓宇, 高真真, 褚庆全. 气候变化背景下我国天麻种植适宜性和适宜区的评估[J]. 作物学报, 2024, 50(4): 1004-1014.
[8] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[9] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[10] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[11] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[12] 何旭刚, 买买提·沙吾提, 夏梓洋, 师君银, 贺小宁, 盛艳芳, 李荣鹏. 1960—2020年新疆主要作物需水量时空特征分析[J]. 作物学报, 2023, 49(12): 3352-3363.
[13] 姜骁, 许静, 潘丽娟, 陈娜, 王通, 江晓东, 殷祥贞, 杨珍, 禹山林, 迟晓元. 花生产量相关性状与气象因子多环境相关性分析[J]. 作物学报, 2023, 49(11): 3110-3121.
[14] 朱大洲, 武宁, 张勇, 孙君茂, 陈萌山. 营养导向型作物新品种选育与审定现状、问题与展望[J]. 作物学报, 2023, 49(1): 1-11.
[15] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!