作物学报 ›› 2024, Vol. 50 ›› Issue (4): 793-807.doi: 10.3724/SP.J.1006.2024.34145
• 综述 • 下一篇
王宇(), 郜耿东, 葛萌萌, 常影, 谭静, 葛贤宏, 王晶, 汪波, 周广生(), 傅廷栋
WANG Yu(), GAO Geng-Dong, GE Meng-Meng, CHANG Ying, TAN Jing, GE Xian-Hong, WANG Jing, WANG Bo, ZHOU Guang-Sheng(), FU Ting-Dong
摘要:
钙是作物必需的中量元素之一, 广泛存在于根、茎、叶、花、果实、种子中, 对作物的生长发育具有重要意义。钙属于再利用难的元素, 其吸收、转运受制于蒸腾作用, 因此农作物常发生生理性缺钙, 从而导致抗逆性减弱, 产量和品质降低。作物体内的钙具有双重功能, 既参与细胞壁与细胞膜的构成, 还可作为细胞内第二信使参与多种环境刺激和内部生长发育信号的响应。细胞中钙的吸收和转运对于维持细胞内钙离子稳态和钙信号精准传导至关重要。近年来, 钙在作物生长与发育中的功能和在作物生产中的应用得到了广泛研究。本文阐述了作物体内钙元素的分布、吸收转运和需求状况, 介绍了作物缺钙症状和原因, 并综述了钙的营养结构功能和第二信使功能及钙信号产生、传导和解码机制, 总结了钙在作物生长发育中的作用, 包括对产量、品质和抗逆性等方面的影响, 同时对其未来研究方向提出了展望。
[1] | 白由路. 中国农业科学院植物营养与肥料研究60年. 植物营养与肥料学报, 2017, 23: 1409-1415. |
Bai Y L. History of plant nutrition and fertilizer research in China. J Plant Nutr Fert, 2017, 23: 1409-1415. (in Chinese with English abstract) | |
[2] | 胡铁军, 张怀杰, 郑佩君, 周飞, 魏杰. 硅钙磷镁钾肥对小麦扬麦20经济性状和土壤理化性状的影响. 浙江农业科学, 2020, 61(1): 15-16. |
Hu T J, Zhang H J, Zheng P J, Zhou F, Wei J. Effects of silicon, calcium, magnesium, phosphorus and potassium fertilizer on economic characters of wheat Yangmai 20 and soil physical and chemical properties. J Zhejiang Agric Sci, 2020, 61(1): 15-16. (in Chinese with English abstract) | |
[3] |
王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186 |
Wang J G, Zhang J L, Guo F, Tang C H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution and yield of peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract) | |
[4] |
Thor K. Calcium-nutrient and messenger. Front Plant Sci, 2019, 10: 440.
doi: 10.3389/fpls.2019.00440 pmid: 31073302 |
[5] | 陈德伟, 汤寓涵, 石文波, 张夏燕, 陶俊, 赵大球. 钙调控植物生长发育的进展分析. 分子植物育种, 2019, 17: 3593-3601. |
Chen D W, Tang Y H, Shi W B, Zhang X Y, Tao J, Zhao D Q. Progress in the regulation of calcium growth and development. Mol Plant Breed, 2019, 17: 3593-3601. (in Chinese with English abstract) | |
[6] |
Barberon M, Vermeer J E, De Bellis D, Wang P, Naseer S, Andersen T G, Humbel B M, Nawrath C, Takano J, Salt D E, Geldner N. Adaptation of root function by vutrient-induced plasticity of endodermal differentiation. Cell, 2016, 164: 447-459.
doi: 10.1016/j.cell.2015.12.021 pmid: 26777403 |
[7] |
White P J. The pathways of calcium movement to the xylem. J Exp Bot, 2001, 52: 891-899.
doi: 10.1093/jexbot/52.358.891 pmid: 11432906 |
[8] |
McAinsh M R, Webb A, Taylor J E, Hetherington A M. Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell, 1995, 7: 1207-1219.
doi: 10.2307/3870096 |
[9] |
White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487-511.
doi: 10.1093/aob/mcg164 |
[10] | 宋雯佩. 果实摄取钙的规律、途径及调控机理的研究. 华南农业大学博士学位论文, 广东广州, 2018. |
Song W P. The Study of Fruit Calcium Uptake Pattern, Pathways and Regulatory Mechanisms. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2018. (in Chinese with English abstract) | |
[11] |
Hocking B, Tyerman S D, Burton R A, Gilliham M. Fruit calcium: transport and physiology. Front Plant Sci, 2016, 7: 569.
doi: 10.3389/fpls.2016.00569 pmid: 27200042 |
[12] |
Hepler P K, Winship L J. Calcium at the cell wall-cytoplast interface. J Integr Plant Biol, 2010, 52: 147-160.
doi: 10.1111/j.1744-7909.2010.00923.x |
[13] | 徐平宜. 中国北方不同类群植物草酸钙特征研究. 南开大学硕士学位论文, 天津, 2021. |
Xu P Y. The Characteristics of Calcium Oxalate in Different Groups of Plants in Northern China. MS Thesis of Nankai University, Tianjin, China, 2021. (in Chinese with English abstract) | |
[14] | 周卫, 汪洪. 植物钙吸收、转运及代谢的生理和分子机制. 植物学通报, 2007, 24: 762-778. |
Zhou W, Wang H. The physiological and molecular mechanisms of Calcium uptake, transport and metabolism in plants. Chin Bull Bot, 2007, 24: 762-778. (in Chinese with English abstract) | |
[15] |
Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
pmid: 15377226 |
[16] | 王守银, 张宁, 樊兆博, 宋涛, 刘志涛, 桑净净, 邢璐, 栾好安, 彭云. 不同形态钙对设施黄瓜生长及钙吸收的影响. 安徽农业科学, 2015, 43(34): 199-201. |
Wang S Y, Zhang N, Fan Z B, Song T, Liu Z T, Sang J J, Xing L, Luan H A, Peng Y. Effects of different calcium forms on growth and assimilation of calcium of cucumber. J Anhui Agric Sci, 2015, 43(34): 199-201. (in Chinese with English abstract) | |
[17] | 张鹏飞, 王立峰, 刘倩倩, 张小娟, 凌冬. 植物中Ca2+生理功能的研究进展. 中南农业科技, 2023, 44(5): 227-232. |
Zhang P F, Wang L F, Liu Q Q, Zhang X J, Ling D. Advances in physiological functions of Ca2+ in plants. South-Central Agric Sci Technol, 2023, 44(5): 227-232. (in Chinese) | |
[18] | 王学武. 水稻钙积累分布规律与调控研究. 湖南农业大学博士学位论文, 湖南长沙, 2007. |
Wang X W. Studies on the Characters of Calcium Accumulation and Distribution of Rice and Its Regulation. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract) | |
[19] | 徐静静, 慈华聪, 何兴东, 薛苹苹, 赵雪莱, 郭健潭, 高玉葆. 天津盐渍化生境54种植物钙晶体与钙组分特征. 应用生态学报, 2012, 23: 1247-1253. |
Xu J J, Ci H C, He X D, Xue P P, Zhao X L, Guo J T, Gao Y B. Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin. J Appl Ecol, 2012, 23: 1247-1253. (in Chinese with English abstract) | |
[20] | 杨利玲, 张桂兰. 土壤中的钙化学与植物的钙营养. 甘肃农业, 2006, (10): 272-273. |
Yang L L, Zhang G L. Calcium chemistry in soil and calcium nutrition in plants. Gansu Agric, 2006, (10): 272-273. (in Chinese) | |
[21] | 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34: 638-644. |
Liu X W, Lu J W, Li X K, Bu R Y, Liu B. Absorption of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chin J Oil Crop Sci, 2012, 34: 638-644. (in Chinese with English abstract) | |
[22] | 龚明, 李英, 曹宗巽. 植物体内的钙信使系统. 植物学通报, 1990, (3): 19-29. |
Gong M, Li Y, Cao Z X. Calcium messenger system in plants. Chin Bull Bot, 1990, (3): 19-29. (in Chinese) | |
[23] | 郑远, 陈兆进. 植物细胞器钙信号研究进展. 植物生理学报, 2015, 51: 1195-1203. |
Zheng Y, Chen Z J. Organellar calcium signaling in plants. Plant Physiol J, 2015, 51: 1195-1203. (in Chinese with English abstract) | |
[24] | 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28: 295-299. |
Zou J, Lu J W, Wu J S, Li Y S. Uptake dynamics of calcium, magnesium and sulfur in four double low Brassica napus varieties. J Huazhong Agric Univ, 2009, 28: 295-299. (in Chinese with English abstract) | |
[25] | 刘珂珂, 于宏, 高华鑫, 郭峰, 张佳蕾, 王建国, 万书波. 施钙对酸性土花生钙素吸收与积累的影响. 中国油料作物学报, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230327.1134.001.html. |
Liu K K, Yu H, Gao H X, Gao F, Zhang J L, Wang J G, Wan S B. Effects of Ca fertilizer application on Ca absorption and accumulation of peanut in acid soil. Chin J Oil Crop Sci, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230327.1134.001.html. (in Chinese with English abstract) | |
[26] | 马文博. 高钙酵素水溶肥制备及对蔬菜钙含量和产量影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022. |
Ma W B. Preparation of High Calcium Enzyme Water-soluble Fertilizer and Its Effect on Vegetable Calcium Content and Yield. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022. (in Chinese with English abstract) | |
[27] | 林葆, 周卫. 棕壤中花生钙素营养的化学诊断与施钙量问题的探讨. 土壤通报, 1997, 28(3): 127-130. |
Lin B, Zhou W. Chemical diagnosis of peanut calcin nutrition in brown soil and discussion on the amount of calcium application. Chin J Soil Sci, 1997, 28(3): 127-130. (in Chinese) | |
[28] | 李兆林, 才卓伟. 钙素营养对大豆的影响研究概述. 农业系统科学与综合研究, 2009, 25: 487-489. |
Li Z L, Cai Z W. A review of the influence of calcium on soybean. Syst Sci Compr Stud Agric, 2009, 25: 487-489. (in Chinese with English abstract) | |
[29] | 刘永菁, 周淑清. 番茄、秋白菜钙营养的研究. 辽宁农业科学, 1988, (5): 22-25. |
Liu Y J, Zhou S Q. Studies on calcium nutrition of tomato and Chinese cabbage. J Liaoning Agric Sci, 1988, (5): 22-25. (in Chinese) | |
[30] | 韩配配. 不同营养元素缺乏对甘蓝型油菜营养生长及根系生长相关基因表达的影响. 中国农业科学院硕士学位论文, 北京, 2016. |
Han P P. The Effects of Different Nutrient Deficiencies on Vegetative Growth and the Expressions of Root Growth-related Genes in Rapeseed Seedlings (Brassica napus L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016. (in Chinese with English abstract) | |
[31] | 王一斐, 周江明, 黄俊峰. 硼镁钙肥对油菜生长及产量的影响. 中国农技推广, 2019, 35(10): 83-85. |
Wang Y F, Zhou J M, Huang J F. Effects of borax, magnesium and calcium fertilizer on growth and yield of rape. China Agric Technol Ext, 2019, 35(10): 83-85. (in Chinese) | |
[32] | 李树学. 水稻缺素防治技术浅析. 农民致富之友, 2017, (24): 139. |
Li S X. Analysis of prevention and control technology of rice deficiency. Nongmin Zhifu Zhiyou, 2017, (24): 139. (in Chinese) | |
[33] | 俞玉. 玉米补钙防止“牛尾巴”. 农家之友, 2016, (9): 56. |
Yu Y. Corn calcium supplements to prevent “cow tail”. NongJia ZhiYou, 2016, (9): 56. (in Chinese) | |
[34] | Wang Y, Martins L B, Sermons S, Balint-Kurti P. Genetic and physiological characterization of a calcium deficiency phenotype in maize. G3: Genes Genom Genet, 2020, 10: 1963-1970. |
[35] | 李晓彤, 杨婉莹, 孙莎莎, 巩彪, 史庆华. 外源褪黑素对番茄缺钙胁迫的缓解效应. 植物生理学报, 2019, 55: 169-176. |
Li X T, Yang W Y, Sun S S, Gong B, Shi Q H. Effect of exogenous melatonin on alleviating calcium deficiency stress in tomato. Plant Physiol J, 2019, 55: 169-176. (in Chinese with English abstract) | |
[36] | 徐谦, 李登云, 李配, 修明霞, 姜兴盛. 果树巧施钙肥提质增效. 果树资源学报, 2021, 2(3): 81-83. |
Xu Q, Li D Y, Li P, Xiu M X, Jiang X S. Calcium fertilizer of fruit trees is used to improve fruit quality and efficiency. J Fruit Resour, 2021, 2(3): 81-83. (in Chinese with English abstract) | |
[37] | 刘银发, 戴熙燕. 合理施肥预防油菜生理性缺钙. 江西农业, 2015, (11): 64. |
Liu Y F, Dai X Y. Rational fertilization prevents physiological calcium deficiency in rapeseed. Jiangxi Agric, 2015, (11): 64. (in Chinese) | |
[38] | 李新国, 万书波. 钙对花生生长发育调控的研究进展. 山东农业科学, 2011, 43(8): 65-67. |
Li X G, Wan S B. Research progress on regulation of calcium to growth and development of peanut (Arachis hypogaea L.). J Shandong Agric Sci, 2011, 43(8): 65-67. (in Chinese with English abstract) | |
[39] | 贾立国, 李利, 秦永林, 樊明寿. 马铃薯钙素营养研究进展. 北方农业学报, 2018, 46(1): 72-75. |
Jia L G, Li L, Qin Y L, Fan M S. Research progress of calcium nutrition in potato. J North Agric, 2018, 46(1): 72-75. (in Chinese with English abstract) | |
[40] |
Wang X Q, Liu X M, Wang W. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines project. J Geochem Explor, 2022, 233: 106907.
doi: 10.1016/j.gexplo.2021.106907 |
[41] | 刘芳. 钾镁互作对番茄生长、产量及钾、钙、镁养分吸收的影响. 宁夏大学硕士学位论文, 宁夏银川, 2022. |
Liu F. Effects of K-Mg Interaction on Growth, Yield and K, Ca and Mg Uptake in Tamato. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2022. (in Chinese with English abstract) | |
[42] | 路亚. 施钙对山东花生土壤特性及花生生长发育的调控机制. 湖南农业大学博士学位论文, 湖南长沙, 2022. |
Lu Y. Effects of Calcium Application on Soil Propertiesand Growth and Development of Peanut in Shandong Province. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2022. (in Chinese with English abstract) | |
[43] | 林锋. 琯溪蜜柚果园钙、镁、硫营养状况及缺镁矫治措施研究. 福建农林大学硕士学位论文, 福建福州, 2013. |
Lin F. The Research on Calcium Magnesium Sulfur Nutritional Status and Correctional Measures about Lack of Magnesium about Guanxi Honey Pomelo. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2013. (in Chinese with English abstract) | |
[44] | 鲁剑巍. 湖北省柑橘园土壤: 植物养分状况与柑橘平衡施肥技术研究. 华中农业大学博士学位论文, 湖北武汉, 2003. |
Lu J W. Study on Soil and Plant Nutrition Status and Balanced Fertilization Techniques of the Citrus Orchards in Hubei. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2003. (in Chinese with English abstract) | |
[45] |
Maclin D, Donald T S, Allen L R, Matthew G. Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 2010, 247: 215-231.
doi: 10.1007/s00709-010-0182-0 pmid: 20658253 |
[46] |
Liang M, Zhang S. Why are crops prone to show symptoms of calcium deficiency in abnormal weather. Res World Agric Econ, 2020, 1: 17-23.
doi: 10.36956/rwae.v1i1.164 |
[47] | 马建梅. 施用钾肥对土壤中钙、镁有效性及其效应的影响. 宁夏大学硕士学位论文, 宁夏银川, 2021. |
Ma J M. Effects of Different Potassium Levels on Availability of Calcium and Magnesium in the Soil and Effection. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2021. (in Chinese with English abstract) | |
[48] |
Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. Arabidopsis Book, 2014, 12: e0169.
doi: 10.1199/tab.0169 |
[49] |
Lampugnani E R, Khan G A, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci, 2018, 131: jcs207373.
doi: 10.1242/jcs.207373 |
[50] | 王艳婷. 植物细胞壁果胶结构特性与木质纤维素高效酶解产糖分子机理的研究. 华中农业大学博士学位论文, 湖北武汉, 2018. |
Wang Y T. Characterization of Pectin Features that Distinctively Affect Lignocellulose Enzymatic Saccharification in Plants. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract) | |
[51] |
Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible W R. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol, 2010, 153: 590-602.
doi: 10.1104/pp.110.153320 pmid: 20388664 |
[52] |
Hepler P K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2155.
doi: 10.1105/tpc.105.032508 pmid: 16061961 |
[53] | Díaz-Corona D A, López-López M E, Ayón-Reyna L E, López-Velázquez J G, López-Zazueta B A, Vega-García M O. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature. J Food Biochem, 2020, 44: e13286. |
[54] |
Tang Y H, Zhao D Q, Meng J S, Tao J. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis. Hortic Res, 2019, 6: 36.
doi: 10.1038/s41438-019-0117-7 |
[55] |
Li C, Tao J, Zhao D Q, You C, Ge J. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems. Int J Mol Sci, 2012, 13: 4704-4713.
doi: 10.3390/ijms13044704 |
[56] |
Perik R R J, Razé D, Ferrante A, Doorn W G V. Stem bending in cut Gerbera jamesonii flowers: effects of a pulse treatment with sucrose and calcium ions. Postharvest Biol Technol, 2014, 98: 7-13.
doi: 10.1016/j.postharvbio.2014.06.008 |
[57] |
Bosch M, Cheung A Y, Hepler P K. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol, 2005, 138: 1334-1346.
doi: 10.1104/pp.105.059865 pmid: 15951488 |
[58] |
Benga G, Holmes R P. Interactions between components in biological membranes and their implications for membrane function. Prog Biophys Mol Biol, 1984, 43: 195-257.
doi: 10.1016/0079-6107(84)90014-2 |
[59] | 王云堂. 钙在植物营养中的作用分析. 种子科技, 2019, 37(6): 32-33. |
Wang Y T. Analysis on the role of calcium in plant nutrition. Seed Sci Technol, 2019, 37(6): 32-33. (in Chinese) | |
[60] |
Zhang T, Yang J, Sun Y W, Kang Y, Yang J, Qi Z. Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. J Plant Physiol, 2018, 226: 22-30.
doi: 10.1016/j.jplph.2018.04.002 |
[61] | Varyukhina S, Lamazière A, Delaunay J L, De Wreede A, Ayala-Sanmartin J. The Ca2+ and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. Biochim Biophys Acta, 2022, 1864: 183810. |
[62] |
Luan S, Wang C. Calcium signaling mechanisms across kingdoms. Annu Rev Cell Dev Biol, 2021, 37: 311-340.
doi: 10.1146/annurev-cellbio-120219-035210 pmid: 34375534 |
[63] |
Mochida S. Presynaptic calcium channels. Int J Mol Sci, 2019, 20: 2217.
doi: 10.3390/ijms20092217 |
[64] |
Peiter E, Maathuis F J, Mills L N, Knight H, Pelloux J, Hetherington A M, Sanders D. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature, 2005, 434: 404-408.
doi: 10.1038/nature03381 |
[65] |
Demidchik V, Shabala S, Isayenkov S, Cuin T A, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytol, 2018, 220: 49-69.
doi: 10.1111/nph.15266 pmid: 29916203 |
[66] |
Hamilton E S, Schlegel A M, Haswell E S. United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol, 2015, 66: 113-137.
doi: 10.1146/annurev-arplant-043014-114700 pmid: 25494462 |
[67] |
Laohavisit A, Davies J M. Annexins. New Phytol, 2011, 189: 40-53.
doi: 10.1111/j.1469-8137.2010.03533.x pmid: 21083562 |
[68] |
Laohavisit A, Richards S L, Shabala L, Chen C, Colaço R D, Swarbreck S M, Shaw E, Dark A, Shabala S, Shang Z, Davies J M. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol, 2013, 163: 253-262.
doi: 10.1104/pp.113.217810 pmid: 23886625 |
[69] | Gerke V, Creutz C E, Moss S E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol, 2005, 6: 449-461. |
[70] |
Tong T, Li Q, Jiang W, Chen G, Xue D W, Deng F L, Zeng F R, Chen Z H. Molecular evolution of calcium signaling and transport in plant adaptation to abiotic stress. Int J Mol Sci, 2021, 22: 12308.
doi: 10.3390/ijms222212308 |
[71] |
Huda K M, Banu M S, Tuteja R, Tuteja N. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling. J Exp Bot, 2013, 64: 3099-3109.
doi: 10.1093/jxb/ert182 pmid: 23918957 |
[72] |
Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biol (Stuttg), 2016, 18: 741-749.
doi: 10.1111/plb.2016.18.issue-5 |
[73] |
Tidow H, Poulsen L R, Andreeva A, Knudsen M, Hein K L, Wiuf C, Palmgren M G, Nissen P. A bimodular mechanism of calcium control in eukaryotes. Nature, 2012, 491: 468-472.
doi: 10.1038/nature11539 |
[74] |
Meneghelli S, Luoni L, De Michelis M I, Heparin stimulates a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. J Biochem, 2008, 143: 253-259.
pmid: 18006516 |
[75] |
Bonza M C, De Michelis M I. The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biol (Stuttg), 2011, 13: 421-430.
doi: 10.1111/plb.2011.13.issue-3 |
[76] |
Yadav A K, Shankar A, Jha S K, Kanwar P, Pandey A, Pandey G K. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Sci Rep, 2015, 5: 17117.
doi: 10.1038/srep17117 pmid: 26607171 |
[77] |
Thor K, Peiter E. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol, 2014, 204: 873-881.
doi: 10.1111/nph.13064 pmid: 25243759 |
[78] | 郑仲仲, 沈金秋, 潘伟槐, 潘建伟. 植物钙感受器及其介导的逆境信号途径. 遗传, 2013, 35: 875-884. |
Zheng Z Z, Shen J Q, Pan W H, Pan J W. Calcium sensors and their stress signaling pathways in plants. Hereditas, 2013, 35: 875-884. (in Chinese with English abstract) | |
[79] |
Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol, 2005, 6: 555-566.
doi: 10.1038/nrm1679 |
[80] |
Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43-58.
doi: 10.1104/pp.103.033068 pmid: 14730064 |
[81] |
Upadhyaya H, Dutta B K, Sahoo L, Panda S K. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O. Kuntze]. Am J Plant Sci, 2012, 3: 443-460.
doi: 10.4236/ajps.2012.34054 |
[82] |
Yuan F, Yang H M, Xue Y, Kong D D, Ye R, Li C J, Zhang J Y, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y K, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371.
doi: 10.1038/nature13593 |
[83] |
Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758 |
[84] |
He L R, Yang X Y, Wang L C, Zhu L F, Zhou T, Deng J W, Zhang X L. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun, 2013, 435: 209-215.
doi: 10.1016/j.bbrc.2013.04.080 |
[85] |
Jing P, Zou J Z, Kong L, Hu S Q, Wang B Y, Yang J, Xie G S. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Sci, 2016, 247: 104-114.
doi: 10.1016/j.plantsci.2016.03.011 pmid: 27095404 |
[86] |
陈娇娆, 续旭, 胡章立, 杨爽. 植物感受盐胁迫及相关钙信号的研究进展. 植物研究, 2022, 42: 713-720.
doi: 10.7525/j.issn.1673-5102.2022.04.021 |
Chen J L, Xu X, Hu Z L, Yang S. Recent Advances on salt stress and related calcium signals in plants. Bull Bot Res, 2022, 42: 713-720. (in Chinese with English abstract) | |
[87] |
Choi W G, Toyota M, Kim S H, Hilleary R, Gilroy S. Salt stress- induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA, 2014, 111: 6497-6502.
doi: 10.1073/pnas.1319955111 |
[88] |
Feng W, Kita D, Peaucelle A, Cartwright H N, Doan V, Duan Q, Liu M C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu H M, Cheung A Y, Dinneny J R. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol, 2018, 28: 666-675.
doi: S0960-9822(18)30025-3 pmid: 29456142 |
[89] |
项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 2021, 30(1): 208-219.
doi: 10.11686/cyxb2020091 |
Xiang H T, Zheng D F, He N, Li W, Wang M L, Wang S Y. Research progress on physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA. Acta Pratac Sin, 2021, 30(1): 208-219. (in Chinese with English abstract) | |
[90] |
Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci, 2013, 14: 5312-5337.
doi: 10.3390/ijms14035312 pmid: 23466881 |
[91] |
Mori K, Renhu N, Naito M, Nakamura A, Shiba H, Yamamoto T, Suzaki T, Iida H, Miura K. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci Rep, 2018, 8: 550.
doi: 10.1038/s41598-017-17483-y |
[92] |
Wang J C, Ren Y L, Liu X, Luo S, Zhang X, Liu X, Lin Q B, Zhu S S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C L, Pan T, Wang Y F, Wu M M, Jing R N, Xu Y, Han M, Wu F Q, Lei C L, Guo X P, Cheng Z J, Zheng X M, Wang Y H, Zhao Z G, Jiang L, Zhang X, Wang Y F, Wang H Y, Wan J M. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Mol Plant, 2021, 14: 315-329.
doi: 10.1016/j.molp.2020.11.022 pmid: 33278597 |
[93] |
Liu Q B, Ding Y L, Shi Y T, Ma L, Wang Y, Song C P, Wilkins K A, Davies J M, Knight H, Knight M R, Gong Z Z, Guo Y, Yang S H. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J, 2021, 40: e104559.
doi: 10.15252/embj.2020104559 |
[94] |
Chu M X, Li J J, Zhang J Y, Shen S F, Li C N, Gao Y J, Zhang S Q. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. J Exp Bot, 2018, 69: 5241-5253.
doi: 10.1093/jxb/ery278 |
[95] |
Zhang H F, Yang B, Liu W Z, Li H W, Wang L, Wang B Y, Deng M, Liang W W, Deyholos M K, Jiang Y Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol, 2014, 14: 8.
doi: 10.1186/1471-2229-14-8 |
[96] |
Iqbal Z, Memon A G, Ahmad A, Iqbal M S. Calcium mediated cold acclimation in plants: underlying signaling and molecular mechanisms. Front Plant Sci, 2022, 13: 855559.
doi: 10.3389/fpls.2022.855559 |
[97] |
Iqbal Z, Shariq Iqbal M, Singh S P, Buaboocha T. Ca2+/Calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Front Plant Sci, 2020, 11: 598327.
doi: 10.3389/fpls.2020.598327 |
[98] |
Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell, 2017, 29: 760-774.
doi: 10.1105/tpc.16.00669 |
[99] |
Wang Q, Yang S, Wan S B, Li X G. The significance of calcium in photosynthesis. Int J Mol Sci, 2019, 20: 1353.
doi: 10.3390/ijms20061353 |
[100] | 陈向明, 郑国生, 张圣旺. 钙对保护地栽培牡丹光合特性的影响. 园艺学报, 2001, 28: 572-574. |
Chen X M, Zheng G S, Zhang S W. Effects of calcium on photosynthetic characteristics of peony cultivated in protected areas. Acta Hortic Sin, 2001, 28: 572-574. (in Chinese with English abstract) | |
[101] | 李敏, 吉文丽, 张恒, 李程程, 杨静萱, 张延龙. 外源Ca2+对油用牡丹凤丹白幼苗光合特性的影响. 西北林学院学报, 2017, 32(5): 39-45. |
Li M, Ji W L, Zhang H, Li C C, Yang J X, Zhang Y L. Effects of exogenous calcuim on photosynthetic characteristics and biomass of oil peony ostii ‘Fengdan White’. Acta Agric Boreali-Occident Sin, 2017, 32(5): 39-45. (in Chinese with English abstract) | |
[102] |
Feng N J, Yu M L, Li Y, Jin D, Zheng D F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol Environ Saf, 2021, 220: 112369.
doi: 10.1016/j.ecoenv.2021.112369 |
[103] | 秦喜彤. 钙调控对春玉米产量和氮肥利用效率的影响. 吉林大学硕士学位论文, 吉林长春, 2020. |
Qin X T. Effects of Calcium Regulation on Yield and Nitrogen Utilization Efficiency of Spring Maize. MS Thesis of Jilin University, Changchun, Jilin, China, 2020. (in Chinese with English abstract) | |
[104] |
Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol, 2008, 179: 675-686.
doi: 10.1111/j.1469-8137.2008.02492.x pmid: 18507772 |
[105] |
Kreimer G, Melkonian M, Holtum J A, Latzko E. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol, 1988, 86: 423-428.
doi: 10.1104/pp.86.2.423 pmid: 16665924 |
[106] |
Nishiyama Y, Yamamoto H, Allakhverdiev S I, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J, 2001, 20: 5587-5594.
doi: 10.1093/emboj/20.20.5587 pmid: 11598002 |
[107] |
Takamatsu H, Takagi S. Actin-dependent chloroplast anchoring is regulated by Ca2+-calmodulin in spinach mesophyll cells. Plant Cell Physiol, 2011, 52: 1973-1982.
doi: 10.1093/pcp/pcr130 pmid: 21949029 |
[108] |
Galeriani T M, Neves G O, Santos Ferreira J H, Oliveira R N, Oliveira S L, Calonego J C, Crusciol C A C. Calcium and boron fertilization improves soybean photosynthetic efficiency and grain yield. Plants (Basel), 2022, 11: 2937.
doi: 10.3390/plants11212937 |
[109] |
Zhang J Z, Li B S, Zhang J L, Christie P, Li X L. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS One, 2020, 15: e0230593.
doi: 10.1371/journal.pone.0230593 |
[110] |
Perveen S, Parveen A, Saeed M, Arshad R, Zafar S. Interactive effect of glycine, alanine, and calcium nitrate Ca(NO3)2 on wheat (Triticum aestivum L.) under lead (Pb) stress. Environ Sci Pollut Res Int, 2022, 29: 37954-37968.
doi: 10.1007/s11356-021-17348-y |
[111] |
Kanu A S, Ashraf U, Mo Z, Sabir S U, Baggie I, Charley C S, Tang X. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. Environ Sci Pollut Res Int, 2019, 26: 24748-24757.
doi: 10.1007/s11356-019-05779-7 |
[112] | 张元棋. 外源钙对酸雨胁迫下水稻氮利用和稻米品质的影响. 江南大学硕士学术论文, 江苏无锡, 2022. |
Zhang Y Q. Effect of Exogenous Ca2+ on Plasma Membrane Composition, Ca2+ Distribution and Transport in Rice Roots under Acid Rain Stress. MS Thesis of Jiangnan University, Wuxi, Jiangsu, China, 2022. (in Chinese with English abstract) | |
[113] |
Metwally A M, Radi A A, El-Shazoly R M, Hamada A M. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. J Plant Res, 2018, 131: 1015-1028.
doi: 10.1007/s10265-018-1008-y pmid: 29357048 |
[114] |
Hou J F, Li J, Yang Y, Wang Z X, Chang B W, Yu X W, Yuan L Y, Wang C G, Chen G H, Tang X Y, Zhu S D. Physiological and transcriptomic analyses elucidate that exogenous calcium can relieve injuries to potato plants (Solanum tuberosum L.) under weak light. Int J Mol Sci, 2019, 20: 5133.
doi: 10.3390/ijms20205133 |
[115] |
张浩, 郑云普, 叶嘉, 高伟, 乔雅君, 戴川景, 赵雨欣, 石少婕. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019, 30: 923-930.
doi: 10.13287/j.1001-9332.201903.020 |
Zhang H, Zheng Y P, Ye J, Gao W, Qiao Y J, Dai C J, Zhao Y X, Shi S J. Effects of exogenous Ca2+ on stomatal traits, photosynthesis, and biomass of maize seedings under salt stress. J Appl Ecol, 2019, 30: 923-930. (in Chinese with English abstract) | |
[116] |
Li Y W, Liang C J. Exogenous application of Ca2+ mitigates simulated acid rain stress on soybean productivity and quality by maintaining nutrient absorption. Environ Sci Pollut Res Int, 2019, 26: 4975-4986.
doi: 10.1007/s11356-018-4034-3 |
[117] |
Lin K H, Lin T Y, Wu C W, Chang Y S. Protective effects of salicylic acid and calcium chloride on sage plants (Salvia officinalis L. and Salvia elegans Vahl) under high-temperature stress. Plants (Basel), 2021, 10: 2110.
doi: 10.3390/plants10102110 |
[118] |
Sugimoto T, Watanabe K, Yoshida S, Aino M, Furiki M, Shiono M, Matoh T, Biggs A R. Field application of calcium to reduce phytophthora stem rot of soybean, and calcium distribution in plants. Plant Dis, 2010, 94: 812-819.
doi: 10.1094/PDIS-94-7-0812 pmid: 30743551 |
[119] | 陈卫平, 杨阳, 谢天, 王美娥, 彭驰, 王若丹. 中国农田土壤重金属污染防治挑战与对策. 土壤学报, 2018, 55: 261-272. |
Chen W P, Yang Y, Xie T, Wang M E, Peng C, Wang R D. Challenges and countermeasures for heavy metal pollution control in farmalands of China. Acta Pedol Sin, 2018, 55: 261-272. (in Chinese with English abstract) | |
[120] | Ahmad P, Abdel Latef A A, Abd Allah E F, Hashem A, Sarwat M, Anjum N A, Gucel S. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci, 2016, 7: 513. |
[121] |
Gong X M, Liu Y G, Huang D L, Zeng G M, Liu S B, Tang H, Zhou L, Hu X, Zhou Y Y, Tan X F. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res Int, 2016, 23: 8699-8708.
doi: 10.1007/s11356-016-6122-6 |
[122] |
Zhang S, Li Q, Nazir M M, Ali S, Ou-Yang Y, Ye S, Zeng F. Calcium plays a double-edged role in modulating cadmium uptake and translocation in rice. Int J Mol Sci, 2020, 21: 8058.
doi: 10.3390/ijms21218058 |
[123] | Nazir M M. 钙和氧化钙纳米颗粒减缓大麦砷和镉毒害及其机理. 浙江大学博士学位论文, 浙江杭州, 2022. |
Nazir M M. Alleviation of Arsenic and Cadmium Toxicity in Barley by Calcium and Calcium Oxide Nanoparticles (CaO NPs) and their Mechanisms. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2022. (in Chinese with English abstract) | |
[124] |
Ji R J, Zhou L M, Liu J L, Wang Y, Yang L, Zheng Q S, Zhang C, Zhang B, Ge H M, Yang Y H, Zhao F G, Luan S, Lan W Z. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS One, 2017, 12: e0173681.
doi: 10.1371/journal.pone.0173681 |
[125] | 尤召阳, 王建国, 刘颖, 闫振辉, 张佳蕾, 万书波. 氮钙互作对花生氮素利用及钙素积累的影响. 中国油料作物学报, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230614.1821.001.html. |
You Z Y, Wang J G, Liu Y, Yan Z H, Zhang J L, Wan S B. Interactive effect of N and Ca on the nitrogen metabolism enzyme activity, nitrogen utilization and calcium accumulation of peanut. Chin J Oil Crop Sci, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230614.1821.001.html. (in Chinese with English abstract) | |
[126] | 杜英俊, 杨洁, 张琪, 陈泽浩, 毛柯, 马锋旺, 李超. 喷施不同钙肥以及钙肥混施激素对‘蜜脆’苹果果实的影响. 陕西农业科学, 2022, 68(6): 54-63. |
Du Y J, Yang J, Zhang Q, Chen Z H, Mao K, Ma F W, Li C. Effects of spraying different calcium fertilizers and mixed application of calcium fertilizers with hormones on ‘Honey Crisp’ apple fruit. J Shaanxi Agric Sci, 2022, 68(6): 54-63. (in Chinese with English abstract) | |
[127] | 张贤聪. 喷施钙肥对蓝莓品质及果胶降解的影响. 四川农业大学硕士学位论文, 四川雅安, 2019. |
Zhang X C. Effects of Calcium Fertilizer Spraying on Blueberry Quality and Pectin Degradation. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019. (in Chinese with English abstract) | |
[128] | Amarante C V T, Katsurayama J M, Pereira A J, Steffens C A. Apple orchard spraying with commercial sources of calcium to improve fruit quality. Acta Hortic, 2020, 1275: 201-206. |
[129] |
El-Hady E S, Merwad M A, Shahin M F M, Hagagg L F. Influence of foliar spray with some calcium sources on flowering, fruit set, yield and fruit quality of olive Kalmata and Manzanillo cultivars under salt stress. Bull Natl Res Centre, 2020, 44: 197.
doi: 10.1186/s42269-020-00452-3 |
[130] | Wahab M, Ullah Z, Sajid M, Usman M, Sohail K, Nayab S, Ullah M. Effect of calcium sources as foliar applications on fruit quality of peach cultivars. Prog Hortic, 2016, 48: 167-172. |
[131] |
El-Ghany M F A, El-Kherbawy M I, Abdel-Aal Y A, El-Dek S I, Abd El-Baky T. Comparative study between traditional and nano calcium phosphate fertilizers on growth and production of snap bean (Phaseolus vulgaris L.) plants. Nanomaterials (Basel), 2021, 11: 2913.
doi: 10.3390/nano11112913 |
[132] |
Bakshi A, Choi W G, Kim S H, Gilroy S. The vacuolar Ca2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. New Phytol, 2023, 240: 1830-1847.
doi: 10.1111/nph.v240.5 |
[133] |
Islam M M, Munemasa S, Hossain M A, Nakamura Y, Mori I C, Murata Y. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol, 2010, 51: 302-311.
doi: 10.1093/pcp/pcq001 |
[1] | 曹馨元, 杜明利, 王宇诚, 陈欣华, 陈佳欣, 凌霄霞, 黄见良, 彭少兵, 邓南燕. 稻油系统周年产量差及形成因素探究:以湖北省武穴市为例[J]. 作物学报, 2024, 50(5): 1287-1299. |
[2] | 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264. |
[3] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[4] | 何旭刚, 买买提·沙吾提, 夏梓洋, 师君银, 贺小宁, 盛艳芳, 李荣鹏. 1960—2020年新疆主要作物需水量时空特征分析[J]. 作物学报, 2023, 49(12): 3352-3363. |
[5] | 朱大洲, 武宁, 张勇, 孙君茂, 陈萌山. 营养导向型作物新品种选育与审定现状、问题与展望[J]. 作物学报, 2023, 49(1): 1-11. |
[6] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[7] | 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941. |
[8] | 魏正业, 张海星, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植方式与施氮对西北旱区饲草作物产量、品质和水分利用的影响[J]. 作物学报, 2022, 48(10): 2638-2653. |
[9] | 蹇述莲, 李书鑫, 刘胜群, 李向楠. 覆盖作物及其作用的研究进展[J]. 作物学报, 2022, 48(1): 1-14. |
[10] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[11] | 张学林, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 周亚男, 郝晓峰, 杨青华. 丛枝菌根真菌对玉米籽粒产量和氮素吸收的影响[J]. 作物学报, 2021, 47(8): 1603-1615. |
[12] | 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019. |
[13] | 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458. |
[14] | 竞霞, 邹琴, 白宗璠, 黄文江. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079. |
[15] | 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035. |
|